Abstract:
An x-ray optical system includes an x-ray source which emits x-rays, a first optical element which conditions the x-rays to form two beams and at least a second optical element which further conditions at least one of the two beams from the first optical element.
Abstract:
The present invention relates to a medical X-ray examination apparatus and method for performing k-edge imaging of an object of interest including material showing k-edge absorption. To allow the use of conventional detector technology, which does not suffer from the limitation to provide very high k-rate capabilities a method is proposed comprising the steps of: —emitting polychromatic X-ray radiation (4; 4a, 4b), —Bragg filtering said polychromatic X-ray radiation by a Bragg filter such that radiation (16) transmitted through said Bragg filter (14; 14a, 14b) passes through said object (5), —detecting X-ray radiation after passing through said object (5), —acquiring projection data at at least two different Bragg reflection angles of said Bragg filter (14; 14a, 14b), and —reconstructing a k-edge image from the acquired projection data.
Abstract:
A method of manufacturing a mirror includes a first step of arranging, on a substrate, a shape adjusting layer having a layer thickness which changes by heat, a second step of arranging, on the shape adjusting layer, a reflection layer including a first layer, a second layer, and a barrier layer which is arranged between the first layer and the second layer, and prevents a diffusion of a material of the first layer and a material of the second layer, and a third step of bringing a shape of the reflection layer close to a target shape by changing a layer thickness profile of the shape adjusting layer after the second step, the third step including a process of partially annealing the shape adjusting layer.
Abstract:
A system for producing at least one high flux photon beam is provided. The system includes two or more photon sources configured to produce photon beams, and at least one first stage optic device coupled to at least one of the photon sources and providing at least one focused photon beam through total internal reflection, wherein at least one of the photon beams and the focused photon beams are combined at a virtual focal spot.
Abstract:
An EUV radiation source comprising a fuel supply configured to deliver droplets of fuel to a plasma formation location, and a collector configured to collect EUV radiation emitted by a plasma at the plasma formation location, wherein the collector has a reflective surface that is a modified ellipsoid shape, the modified ellipsoid shape providing improved intensity uniformity of collected EUV radiation in the far field compared with a perfect ellipsoid shape.
Abstract:
An EM energy projector incorporates a final stage radiator including a shaped reflecting spike having a forward radiant axis. The shaped spike defines a set of equivalent, discrete input locations, there being a plurality of such locations. The emitters are arranged in a closed line array, and disposed with all of the emitters oriented inwardly toward the forward radiant axis.
Abstract:
For the use in illumination systems and projection exposure apparatuses for UV or EUV lithography, a reflective optical element is provided for a operating wavelength in the ultraviolet to extreme ultraviolet wavelength ranges. The reflective optical element includes a substrate and a reflective surface on the substrate. The multilayer system has layers of at least two alternating materials having different real parts of the refractive index at the operating wavelength. Radiation in the operating wavelength of a certain incident angle bandwidth distribution can impinge on the reflective optical element. The reflective surface includes one or more first portions, in which the layers have alternating materials of a first period thickness. The reflective surface includes one or more additional portions, in which the layers of alternating materials have a first period thickness and at least one additional period thickness. The arrangement of the first and additional portions (A2) across the reflective surface is adapted to the incident angle bandwidth distribution. Furthermore, a projection system and a projection exposure apparatus including such a reflective optical element are suggested.
Abstract:
A reflector for an ultraviolet lamp can be used in a substrate processing apparatus. The reflector comprises a longitudinal strip extending the length of the ultraviolet lamp. The longitudinal strip has a curved reflective surface and comprises a plurality of through holes to direct a coolant gas toward the ultraviolet lamp. A chamber that uses an ultraviolet lamp module with the reflector, and a method of ultraviolet treatment are also described.
Abstract:
Provided is a technique for X-ray reflection, such as an X-ray reflecting mirror, capable of achieving a high degree of smoothness of a reflecting surface, high focusing (reflecting) performance, stability in a curved surface shape, and a reduction in overall weight. A silicon plate (silicon wafer) is subjected to thermal plastic deformation to form an X-ray reflecting mirror having a reflecting surface with a stable curved surface shape. The silicon wafer can be deformed to any shape by applying a pressure thereto in a hydrogen atmosphere at a high temperature of about 1300° C. The silicon plate may be simultaneously subjected to hydrogen annealing to further reduce roughness of a silicon surface to thereby provide enhanced reflectance.
Abstract:
Grazing incidence collectors (GICs) for extreme ultraviolet (EUV) and X-ray radiation sources, such as laser produced plasma (LPP) sources, are disclosed. Source-collector systems comprising GICs and LPP sources are also disclosed. A laser beam is directed along the collector axis to a fuel target to form the LPP source, and the collector is arranged to collect the radiation and reflect it to an intermediate focus. The collector may include one or more grazing-incidence mirrors, and these mirrors may be electroformed. lithography systems that employ the source-collector systems as disclosed herein.