Abstract:
A powder metallurgy wear-resistant tool steel includes chemical components by mass percent of: V: 12.2%-16.2%, Nb: 1.1%-3.2%, C: 2.6%-4.0%, Si: ≦2.0%, Mn: 0.2%-1.5%, Cr: 4.0%-5.6%, Mo: ≦3.0%, W: 0.1%-1.0%, Co: 0.05%-0.5%, N: 0.05%-0.7%, with balance iron and impurities; wherein a carbide component of the powder metallurgy wear-resistant tool steel is an MX carbide with a NaCl type face-centered cubic lattice structure; wherein an M element of the MX carbide comprises V and Nb, and an X element comprises C and N.
Abstract:
A spray-formed high-speed steel includes chemical components by mass percent of: C: 0.85-1.65%, Si: 0.1-1.2%, Cr: 3.5-8.0%, W: 4.0-6.5%, Mo: 4.5-7.0%, V: 1.0-4.0%, Co: 1.0-8.0%, Mn: 0.2-0.8%, and Nb: 0.2-3.5%, with balance of iron and impurities.
Abstract:
The present application provides a method for preparing a rare-earth permanent magnetic material with grain boundary diffusion using composite target by vapor deposition, in which the composite target is evaporated and attached to the surface of the NdFeB magnet, and in which medium-high temperature treatment and low temperature aging treatment are employed, resulting in that the coercive force of the magnet is improved significantly and the remanence and the magnetic energy product substantially are not reduced. The advantageous effects of the present application is as follows: the coercive force of the magnet is improved, and meanwhile the defects such as melting pits and crystal grain growth and the like caused by high temperature treatment for the long time are eliminated, and the usage amount of heavy rare-earth is greatly reduced, thereby lowering the cost of the product.