Abstract:
An acoustic wave device comprising at least one surface acoustic wave filter and one bulk acoustic wave filter, the device including, on a substrate comprising a second piezoelectric material: a stack of layers including a first metal layer and a layer of a first monocrystalline piezoelectric material, wherein the stack of layers is partially etched so as to define a first area in which the first and second piezoelectric materials are present and a second area in which the first piezoelectric material is absent; a second metallization at the first area for defining the bulk acoustic wave filter integrating the first piezoelectric material, and a third metallization at the second area for defining the surface acoustic wave filter integrating the second piezoelectric material.
Abstract:
An electromechanical device having a resonator using acoustic waves propagating laterally within a piezoelectric plane resonant structure and electrodes on a face of said structure. The resonant structure comprises: a transduction region having a transduction length and generating acoustic waves; a free propagation region for the acoustic waves, adjacent to the transduction region and defined the plane of the transduction region; the resonant structure length being equal to an integer number of half-wavelengths, the resonance frequency of said resonator equaling the average propagation velocity of the wave within the structure divided by said wavelength, to adjust the quality factor of the resonator fixed by the length of the resonant structure and the coupling coefficient fixed by the ratio of the transduction length over the length of the resonant structure; the resonant structure defined by the assembly of the transduction region and the propagation region being laterally bounded by reflection regions.
Abstract:
Acoustic resonator comprising an electret, and method of producing said resonator, application to switchable coupled resonator filters.The resonator comprises: at least one piezoelectric layer (30); electrodes (24, 26) on either side of this layer; and at least one electret layer (32) between the electrodes, to apply a permanent electric field to the piezoelectric layer. The intensity of this electric field is determined to shift the resonance frequency of the resonator by a desired value. The piezoelectric layer may contain electrical charges to itself constitute the electret layer.
Abstract:
A process for producing an acoustic device having a phononic crystal structure comprising inclusions produced in a first medium distributed in a matrix of a second medium, to block propagation of acoustic waves within a bandgap frequency band, includes: defining geometric parameters of said inclusions, which have walls contacting said matrix, making at least one non-zero first wall angle, to the normal of the plane of said structure, said geometric parameters including said first wall angle; determining a function relating to variation in frequency position of said bandgap with said wall angle or relating to variation in width of said bandgap with said wall angle; determining said at least first angle, for a selected frequency position and/or selected width of the bandgap, from the function or functions determined beforehand; and producing said inclusions having at least said first wall angle in said matrix formed by said second medium.
Abstract:
An acoustic wave bandpass filter comprises at least two bulk acoustic wave resonators, laterally coupled to each other acoustically, each resonator including a film of piezoelectric material and at least a first electrode and/or a second electrode, said bulk waves propagating in a direction perpendicular to the plane of the film of piezoelectric material, characterized in that: it further comprises at least a first phononic crystal structure between said resonators such that the transmission coefficient of the lateral acoustic waves can be decreased in a direction parallel to the plane of the piezoelectric film; and the first phononic crystal structure is formed in a matrix of dielectric material or with patterns made from dielectric material.
Abstract:
A guided acoustic wave resonant device is provided. The device comprises at least two filters (F1, . . . , Fi, . . . , FN), each filter comprising at least two acoustic wave resonators (R11-R12, . . . , Ri1-Ri2, . . . , RN1-RN2), each filter having a useful frequency band (BF1, . . . , BFi, . . . , BFN) centered on a central frequency (f1, . . . , fi, . . . , fN), each resonator comprising at least one suite of inter-digitated upper electrodes exhibiting a periodic structure of period (Λij) and a layer of piezoelectric material, each resonator having a coupling coefficient (k21, k22, . . . , k2n) and a resonant frequency (fr1, . . . , fr2, . . . , fN), wherein at least one of the resonators comprises a differentiation layer (CDfi) making it possible in combination with the period of the inter-digitated electrodes to modify the coupling coefficient of the said resonator, the useful band and the central frequency being determined by the resonant frequencies and the coupling coefficients of the resonators which are adapted so as to have a determined useful bandwidth.
Abstract:
An acoustic wave device comprising at least one surface acoustic wave filter and one bulk acoustic wave filter, the device including, on a substrate comprising a second piezoelectric material: a stack of layers including a first metal layer and a layer of a first monocrystalline piezoelectric material, wherein the stack of layers is partially etched so as to define a first area in which the first and second piezoelectric materials are present and a second area in which the first piezoelectric material is absent; a second metallization at the first area for defining the bulk acoustic wave filter integrating the first piezoelectric material, and a third metallization at the second area for defining the surface acoustic wave filter integrating the second piezoelectric material.
Abstract:
Acoustic resonator comprising an electret, and method of producing said resonator, application to switchable coupled resonator filters.The resonator comprises: at least one piezoelectric layer (30); electrodes (24, 26) on either side of this layer; and at least one electret layer (32) between the electrodes, to apply a permanent electric field to the piezoelectric layer. The intensity of this electric field is determined to shift the resonance frequency of the resonator by a desired value. The piezoelectric layer may contain electrical charges to itself constitute the electret layer.