Abstract:
A novel heat assisted magnetic recording (HAMR) medium and the fabrication method therefor are provided. The exchange coupling effect occurring at the interface of FePt/CoTb double layers is adopted, and thus the resulting magnetic flux would be sufficient enough to be detected and readout under the room temperature. The provided HAMR medium exhibits a relatively high saturation magnetization and perpendicular coercivity, and thus possesses a great potential for the ultra-high density recording application.
Abstract:
A single bridge magnetic field sensor includes a fluxguide mounted to a surface of a substrate. A bridge unit includes first, second, third, and fourth magnetoresistive elements mounted around the fluxguide and mounted on the surface of the substrate. A switching circuit is electrically connected to two voltage inputs, two grounding terminals, two voltage output terminals, and the four magnetoresistive elements. The switching circuit can proceed with circuit switching according to a magnetic field in each axis direction to be measured, thereby changing electrical connection between the voltage inputs, the grounding terminals, the voltage output terminals, and the four magnetoresistive elements. A measuring unit is electrically connected to the two voltage output terminals and the four magnetoresistive elements. The magnetoresistances of the four magnetoresistive elements measured by the measuring unit and output voltages of the voltage output terminals can be used to obtain a magnetic field measurement result.
Abstract:
A magnetic recording medium having at least an adjustable magnetic property is provided. The provided magnetic recording medium includes a substrate and a layer sequence located thereon. The layer sequence includes a underlayer, a buffer layer and a recording layer made of a magnetic material. According to the present invention, the adjustable magnetic property of the magnetic recording medium is adjusted via the variation of the thickness of the underlayer.
Abstract:
The present invention includes that using single layer amorphous CoTbAg thin films as heat assisted magnetic recording (HAMR) media, and the method for producing these CoTbAg amorphous thin films. Co69.48−XTb30.52AgX films with x=0˜25.68 at. % are fabricated by DC or RF magnetron sputtering and rotating substrate. Two kinds of targets can be used. One is the CoTbAg alloy target. The other one consists of Co, Tb and Ag three targets. The CoTbAg film is prepared by co-sputtering of Co, Tb and Ag targets. The film composition can be controlled by changing the sputtering power density of each target. CoTbAg films are deposited on glass substrate or nature-oxide silicon wafer at room temperature. These films have high saturation magnetization and high perpendicular coercivity. They have amorphous structure and can be applied to HAMR media.
Abstract:
A single bridge magnetic field sensor includes a fluxguide mounted to a surface of a substrate. A bridge unit includes first, second, third, and fourth magnetoresistive elements mounted around the fluxguide and mounted on the surface of the substrate. A switching circuit is electrically connected to two voltage inputs, two grounding terminals, two voltage output terminals, and the four magnetoresistive elements. The switching circuit can proceed with circuit switching according to a magnetic field in each axis direction to be measured, thereby changing electrical connection between the voltage inputs, the grounding terminals, the voltage output terminals, and the four magnetoresistive elements. A measuring unit is electrically connected to the two voltage output terminals and the four magnetoresistive elements. The magnetoresistances of the four magnetoresistive elements measured by the measuring unit and output voltages of the voltage output terminals can be used to obtain a magnetic field measurement result.
Abstract:
A magnetic recording medium is provided in the present invention. The magnetic recording medium including a substrate; a base layer disposed on the substrate; an intermediate layer disposed on the base layer; and a recording layer disposed on the intermediate layer and including a magnetic matrix and a plurality of non-magnetic particles percolated in the magnetic matrix.
Abstract:
A high density magnetic recording film by using a rapid thermal annealing process is provided. The high density magnetic recording film includes a substrate; and a ferromagnetic layer formed on the substrate; wherein the rapid thermal annealing process is performed for the ferromagnetic layer at a temperature range of 600 to 800° C. for 5 to 180 seconds with a heating ramp rate of 60 to 100° C./sec so as to obtain the high density magnetic recording film.
Abstract:
The perpendicular magnetic recording medium of the present invention includes a substrate, a non-magnetic layer, a ferromagnetic layer and an antiferromagnetic oxide. The non-magnetic layer is formed on the substrate and the ferromagnetic layer is formed on the non-magnetic layer. The antiferromagnetic oxide is formed in the ferromagnetic layer after the perpendicular magnetic recording medium is annealed by an annealing process. An exchange coupling interaction between the antiferromagnetic oxide and the ferromagnetic materials is introduced.
Abstract:
A method for fabricating an L10 alloy film is provided. The method includes steps of (a) providing a substrate; (b) heating the substrate as a preheated substrate at a first temperature ranged from 100° C. to 600° C. for a time period ranged from 5 minutes to 120 minutes, and then cooling the substrate to room temperature in the sputtering chamber; (c) depositing an alloy film on the preheated substrate; and (d) annealing the alloy film at a second temperature ranged from 200° C. to 500° C. to form the alloy film.
Abstract:
The present invention discloses a magnetic field sensing device and method. The magnetic field sensing device includes a pinned layer with a first magnetization direction, an analyzer with a second magnetization direction, wherein the first and the second magnetization directions form an angle, and a sensing layer of magnetic material, located between the analyzer and the pinned layer. The magnetic field sensing method includes: providing a pinned layer with a first magnetization direction, providing an analyzer with a second magnetization direction, wherein the first and the second magnetization directions form an angle, and providing a sensing layer of magnetic material, located between the analyzer and the pinned layer.