Abstract:
A process for the disruption of a biological cell comprising freezing, boiling or perhaps alternately freezing and boiling the material containing the biological cell using a thermoelectric cell a base face whereof is contiguous with a heat sink/source held at a substantially constant temperature and a working face . Apparatus for carrying out the disruption process comprises a peltier cell a base face of which is flexibly attached to a heat sink arranged to be kept at a constant temperature of around 50° C. and a working face of which is contiguous with a reaction vessel or a reaction vessel holder. Reversal of the voltage in the peltier cell enables the working face alternately to reach below freezing and above boiling temperatures, and/or with use of a resistive wire on the vessel holder for heating with the TEC used purely for cooling The peltier cell base face is constructed of materials which tend to inhibit disintegration of the peltier cell brought about by expansion and contraction under heat.
Abstract:
Apparatus is disclosed for generating a signal representative of a co-ordinate position of a movable indicating member, the member being constructed for interacting magnetically with sensing coils. The apparatus includes a plurality of sensing coils (2 to 11) for interacting magnetically with such a member, the coils being positioned substantially in or adjacent to a real or imaginary surface in or adjacent to which such an indicating member may be moved, the sensing coils being positioned to divide an area of interest in the surface into regions, each of the coils encircling part of the area of interest and having conductors in the area substantially along region boundaries only, each of the regions being within an arrangement of the sensing coils particular to that region. A further coil (1) is positioned substantially in or adjacent to the real or imaginary surface and surrounds the entire area of interest. There are a first one (2) and a second one (3) of the sensing coils which have conductors at substantially the same pitch but which coils are offset relative to each other. Processing means (16, D2 to D11, 17, G2 to G11 and L1 to L9) includes an exclusive-OR gate (15), an output of each of the first and second ones of the sensing coils being coupled only to a respective input of this gate. The processing means uses the output signal of the exclusive-OR gate and other signals derived from the sensing coils with reference to the signal in the further coil to produce a binary coded signal representative of a co-ordinate position of such a member.