Abstract:
Embodiments of the invention include functionalized polysaccharides and compositions and structures including the same. In an embodiment, the invention includes an active agent delivery composition including a polysaccharide functionalized with a coupling group, wherein the polysaccharide lacks charged groups at a pH of between 6 and 8; and a complex comprising a nucleic acid and a transfection agent. In an embodiment, the invention includes an active agent delivery structure including a matrix comprising a polysaccharide covalently cross-linked through the residue of a coupling group on the polysaccharide, the polysaccharide lacking charged groups at a pH of between 6 and 8; and a nucleic acid delivery complex disposed within the active agent delivery structure. In an embodiment, the invention includes a material for medical applications including glycogen functionalized with coupling groups at a degree of substitution of between about 0.01 and 0.5. Other embodiments are also included herein.
Abstract:
The present invention is directed to polymeric matrices for the controlled release of a hydrophilic bioactive agent. Generally, the elution control matrix includes a polymeric matrix having a first polymer and a plurality of microparticles that include the hydrophilic bioactive agent. In one embodiment, the matrix includes a polymer comprising hydrophilic and hydrophobic portions. In another embodiment, the microparticles include a crosslinked hydrophilic polymer.
Abstract:
The present invention is directed to polymeric matrices for the controlled release of a hydrophilic bioactive agent. Generally, the elution control matrix includes a polymeric matrix having a first polymer and a plurality of microparticles that include the hydrophilic bioactive agent. In one embodiment, the matrix includes a polymer comprising hydrophilic and hydrophobic portions. In another embodiment, the microparticles include a crosslinked hydrophilic polymer.
Abstract:
Embodiments of the invention include devices and methods for the release of nucleic acid complexes. In an embodiment the invention includes a nucleic acid delivery particle. The delivery particle can include a polymeric matrix including a polyethyleneglycol containing copolymer and a nucleic acid complex disposed within the polymeric matrix. The nucleic acid complex can include a nucleic acid and a carrier agent. In an embodiment the invention includes a medical device including a first polymeric matrix comprising a first polymer and a plurality of nucleic acid delivery particles disposed within the first polymeric matrix. The medical device can be configured to release the nucleic acid complex when the medical device is implanted within a subject. Other embodiments are included herein.
Abstract:
The invention provides an injectable formulation that includes an active agent; a biocompatible solvent system, crosslinkable polymers such as polysaccharides; and crosslinking agents; wherein the formulation is substantially free of water. The invention also provides a drug delivery depot formed from the injectable formulation wherein the polymers crosslink in the presence of water in the body of a patient, or in the air, prior to implantation in the patient. Also provided are methods of treatment using such formulations and drug delivery systems.
Abstract:
The invention provides a formulation that includes a biocompatible solvent system, a biodegradable polymer that is substantially soluble in the biocompatible solvent system, and an active pharmaceutical ingredient that is substantially insoluble in the biocompatible solvent system. The formulation can form a drug-eluting implant, when injected into mammalian tissue. The solvent system and the biodegradable polymer can be selected so that the implant provides extended, delayed, controlled and/or modified release of the active pharmaceutical ingredient, for example, over the course of days, weeks or months.
Abstract:
The invention provides emulsion compositions that include a hydrophobic compound and an arylboronic acid. An exemplary emulsion comprises a hydrophobic polymer and a halogenated arylboronic acid. Use of an arylboronic acid provides the emulsion with exceptional stability. The stability provides advantages for the formation of articles formed from the emulsion, including microparticles, as well as other implantable or injectable medical articles having polymeric matrices.
Abstract:
The present invention relates to relates to combination degradable and non-degradable matrices and related methods. In an embodiment, the invention includes an active agent delivery matrix including a degradable polymer network, a non-degradable polymer network, the non-degradable polymer network interspersed within the degradable polymer network, and an active agent. In an embodiment, the invention includes an active agent elution control matrix including a degradable polymer; and a non-degradable polymer interspersed with the degradable polymer. In an embodiment, the invention includes a method of making an active agent delivery matrix including mixing a degradable polymer with a first solvent to form a degradable polymer solution; mixing a non-degradable polymer with a second solvent to form a non-degradable polymer solution; and simultaneously depositing the degradable polymer solution and the non-degradable polymer solution onto a substrate.
Abstract:
Embodiments of the invention include particles with nucleic acid complexes, medical devices including the same and related methods. In an embodiment, the invention can include a method of making a medical device. The method can include contacting nucleic acids with cationic carrier agents to form nucleic acid complexes, adsorbing the nucleic acid complexes to porous particles to form nucleic acid complex containing particles, mixing the nucleic acid complex containing particles with a polymer solution to form a coating mixture, and applying the coating mixture to a substrate. In an embodiment, the method can include contacting nucleic acids with cationic carrier agents to form nucleic acid complexes, combining the nucleic acid complexes with a material to form nucleic acid complex containing particles in situ, mixing the nucleic acid complex particles with a polymer solution to form a coating mixture, and applying the coating mixture to a substrate. In an embodiment, the invention can include an implantable medical device including a substrate, an elution control matrix disposed on the substrate; a plurality of particles disposed within the elution control matrix, and a plurality of nucleic acid complexes disposed within the particles, the nucleic acid complexes comprising a nucleic acid and a cationic carrier agent. Other embodiments are included herein.