Abstract:
An optical component comprises a carrier plate (1) having a first main surface (2) and a second main surface (3) facing away from the first main surface (2), and a first lens structure (4) on the first main surface (2), wherein the first lens structure (4) has at least a first lens element (41) having a first polygonal form and a second lens element (42) having a second polygonal form, the first lens structure (4) completely covers the first main surface (2), and the first lens element (41) and the second lens element (42) are non-congruent with respect to one another and/or differ in terms of their orientation on the first main surface (2) of the carrier plate (1).
Abstract:
An optoelectronic component has optically active region, with the optically active region comprising at least one semiconductor chip which is provided for generating electromagnetic radiation, and comprising a beam-forming element through which at least a portion of the electromagnetic radiation which is emitted from the semiconductor chip in operation passes and which has an optical axis, and with the optically active region having quadrant symmetry with respect to a coordinate system which is perpendicular to the optical axis. An illumination device has an optoelectronic component such as this.
Abstract:
This invention relates to a method of designing an illumination device, wherein a light source unit is modeled with a set of rays. Therein, each ray is assigned a light power and is further characterized by a light volume, which specifies how “spread out” the light is in area and angle. In this way, a selection of rays with respect to their “density” becomes possible, and an optical system can be optimized for a transmission of those rays providing the most light per volume.
Abstract:
In at least one embodiment of the luminaire (1), it includes at least one optoelectronic semiconductor device (4) and at least one primary optical unit (11) which is disposed downstream of the semiconductor device (4) and is spaced apart therefrom. Furthermore, the luminaire (1) comprises a secondary optical unit (22) and/or a tertiary optical unit (33) which is/are disposed downstream of the primary optical unit (11). A proportion of at least 30% of radiation emitted by the semiconductor device (4) passes to the secondary optical unit (22) and/or to the tertiary optical unit (33). Furthermore, the secondary optical unit (22) and/or the tertiary optical unit (33) is/are arranged for small-angle scattering of the radiation emitted by the semiconductor device (4).
Abstract:
An optoelectronic component with a desired color impression in the switched-off state includes, in particular, a semiconductor layer sequence with an active region, that during operation radiates electromagnetic radiation with a first spectrum, and a wavelength conversion layer that is disposed downstream from the semiconductor layer sequence in the beam path of the electromagnetic radiation with the first spectrum, and that at least partially converts a subspectrum of the electromagnetic radiation with the first spectrum into electromagnetic radiation with a second spectrum, and a filter layer that reflects at least a part of the radiation incident from outside onto the optoelectronic component.
Abstract:
An optoelectronic component has optically active region, with the optically active region comprising at least one semiconductor chip which is provided for generating electromagnetic radiation, and comprising a beam-forming element through which at least a portion of the electromagnetic radiation which is emitted from the semiconductor chip in operation passes and which has an optical axis, and with the optically active region having quadrant symmetry with respect to a coordinate system which is perpendicular to the optical axis. An illumination device has an optoelectronic component such as this.
Abstract:
In at least one embodiment of the surface light guide, the surface light guide includes at least one scattering element for scattering light. A decoupling coefficient is caused by the scattering element. The decoupling coefficient is set in a varying fashion along a main light-guiding direction. In a direction perpendicular to the main sides of the surface light guide, the opacity value is no more than 0.10, the transmission coefficient is at least 0.75 and the quotient of the minimum light density and maximum light density seen over a continuous emitting area of at least one of the main sides is at least 0.75.
Abstract:
A lighting device (1) comprises at least one element (2) emitting light which is at least in part visible, and at least one conversion medium (3), which converts at least part of the radiation emitted by the element (2) into radiation of another frequency. In addition, the lighting device (1) comprises at least one filter medium (4) which filters at least part of the radiation, and which is configured such that the quantity of the conversion medium (4) to be used is reduced for at least one predetermined color saturation and/or one predetermined hue. This means that, compared with a light source corresponding to the lighting device (1) apart from the filter medium (4), savings are made in conversion medium (3) while achieving the same color saturation or the same hue. Light of a predetermined color saturation or of a predetermined hue may be efficiently generated by such a lighting device (1) and the lighting device (1) may be inexpensively produced. In operation, it also has high light intensities and a long service life.
Abstract:
A surface light guide includes a radiation exit area running along a main extension plane of the surface light guide and includes a light guiding region, which has scattering locations and a coating arranged on a first main area of the light guiding region, wherein radiation coupled in along the main extension plane impinging on the first main area after scattering at the scattering locations has an excessively increased radiation component and the coating reduces in a targeted manner an exit of the excessively increased radiation component from the radiation exit area.
Abstract:
A method for the binning of a radiation-emitting, optoelectronic semiconductor component (20) is specified, comprising the following steps: providing a radiation-emitting, optoelectronic semiconductor component (20), determining the color locus (8) of the light emitted by the radiation-emitting, optoelectronic semiconductor component (20) during operation, classifying the radiation-emitting, optoelectronic semiconductor component (20) into a predefined color locus range (6) comprising the color locus determined.