Abstract:
The present invention relates to a catalyst for hydrocarbon steam cracking, a method of preparing the same, and a method of preparing olefin by the hydrocarbon steam cracking by using the catalyst, and more specifically, to a catalyst for hydrocarbon steam cracking for preparing light olefin including an oxide catalyst (0.5≦j≦120, 1≦k≦50, A is transition metal, and x is a number corresponding to the atomic values of Cr, Zr, and A and values of j and k) represented by CrZrjAkOx, wherein the composite catalyst is a type that has an outer radius r2 of 0.5R to 0.96R (where R is a radius of a cracking reaction tube), a thickness (t; r2−r1) of 2 to 6 mm, and a length h of 0.5r2 to 10r2, a method of preparing the same, and a method of preparing light olefins by using the same.
Abstract:
Provided is a method of fabricating an organic light emitting diode. The method may include preparing a substrate, forming a textured portion on the substrate, the textured portion including protruding patterns randomly and irregularly arranged on the substrate, forming a planarization layer on the substrate to planarize the substrate formed with the textured portion, forming a first electrode on the planarization layer, forming an organic light emitting layer on the first electrode, and forming a second electrode on the organic light emitting layer.
Abstract:
A method of fabricating an organic light emitting diode using phase separation. The method includes preparing a transparent substrate. A first light path control layer is formed on the transparent substrate. The first light path control layer includes a mixture of a first medium and a second medium having a lower refractive index than the first medium using the phase separation. An anode, an organic emission layer, and a cathode are sequentially stacked on the first light path control layer. In this method, an OLED with improved light extraction efficiency can be fabricated using a simple and inexpensive process.
Abstract:
The inventive concept provides an organic light emitting diode that can change its color. A color change is embodied by a micro cavity effect caused by a metal thin film partly formed on a positive pole. The organic light emitting diode includes a positive pole, an organic luminous layer and a negative pole that can be sequentially stacked on a substrate, and further include a metal thin film layer having first strip lines extending in a first direction and being arranged in a second direction crossing the first direction on the positive pole.
Abstract:
The inventive concept provides light emitting devices and methods of manufacturing a light emitting device. The light emitting device may include a transparent substrate including a first region and a second region, a first transparent electrode disposed on a first surface of the transparent substrate, a second transparent electrode facing and spaced apart from the first transparent electrode, an organic light emitting layer disposed between the first and second transparent electrodes, an assistant electrode disposed between the first and second transparent electrodes and selectively masking the second region, and a light path changing structure disposed on a second surface of the transparent substrate and selectively masking the second region.
Abstract:
Disclosed is a method for integrating an image sensor capable of removing a flicker noise without causing any burdens on a hardware due to setting up additional logics. The method for integrating an exposure time of an image sensor employing a line scan method, including the steps of: performing an integration to a first line when an integer multiple of a light source frequency is different from an integration time; and performing an integration to a second line at a phase substantially equal to a phase in which the integration to the first line is started.
Abstract:
Catalysts for dewaxing of hydrocarbon feeds, particularly feeds with elevated sulfur and nitrogen levels, are provided. The dewaxing catalysts include a zeolite with a low silica to alumina ratio combined with a low surface binder, or alternatively the formulated catalyst has a high ratio of zeolite surface area to external surface area.
Abstract:
A method and an apparatus are provided for editing a display of a touch display apparatus. A first screen including at least one object is displayed. An object on the first screen is designated. The touch display apparatus is converted to an edit mode for editing the display, when the object is designated. When a movement of the touch display apparatus is detected, the first screen is converted into a second screen according to at least one of a degree and a direction of the movement. The designated object is displayed on the second screen.
Abstract:
A method of fabricating an organic light emitting diode using phase separation. The method includes preparing a transparent substrate. A first light path control layer is formed on the transparent substrate. The first light path control layer includes a mixture of a first medium and a second medium having a lower refractive index than the first medium using the phase separation. An anode, an organic emission layer, and a cathode are sequentially stacked on the first light path control layer. In this method, an OLED with improved light extraction efficiency can be fabricated using a simple and inexpensive process.
Abstract:
The present invention relates to a catalyst for hydrocarbon steam cracking for the production of light olefin, a preparation method of the catalyst and a preparation method of olefin by using the same. More precisely, the present invention relates to a composite catalyst prepared by mixing the oxide catalyst powder represented by CrZrjAkOx (0.5≦j≦120, 0≦k≦50, A is a transition metal, x is the number satisfying the condition according to valences of Cr, Zr and A, and values of j and k) and carrier powder and sintering thereof, a composite catalyst wherein the oxide catalyst is impregnated on a carrier, and a method of preparing light olefin such as ethylene and propylene by hydrocarbon steam cracking in the presence of the composite catalyst. The composite catalyst of the present invention has excellent thermal/mechanical stability in the cracking process, and has less inactivation rate by coke and significantly increases light olefin yield.