Abstract:
A plurality of inserts are anchored in holes or recesses in a probe head. Shafts are coupled to the inserts, and adjustable multi-part fasteners are attached to the shafts and to a stiffener. The multi-part fasteners are operated to move the shafts and couple the probe head, the stiffener, and other components of a microelectronic contactor assembly. In some embodiments, the inserts may be anchored in the probe head using an adhesive. In some embodiments, the probe head may comprise more than one major substrate, and the inserts may be anchored in either of the substrates.
Abstract:
A method for repairing a damaged probe from a probe card comprising the steps of removing the damaged probe from the probe card, separating one a plurality of replacement probes from a substrate and installing the one probe separated from the plurality of replacement probes where the damaged probe was removed.
Abstract:
The present invention is directed to a probe head having a probe contactor substrate with at least one slot that passes through the probe contactor substrate, at least one probe contactor adapted to test a device under test, with the probe contactor being coupled to the a top side of the probe contactor substrate and electrically connected to a terminal also disposed on top of the probe contactor substrate, and a space transformer having at least one bond pad coupled to a top side of the space transformer, and a bond interconnect which electrically couples the bond pad to the terminal through the slot in the probe contactor substrate.
Abstract:
A novel probe design is presented that comprises a plurality of pivots. These pivots allow the probe to store the displacement energy more efficiently. The novel probe comprises a substrate, and a probe connected to the substrate. The probe further comprises a base that is connected to the substrate, a bending element connected to the base and a probe tip connected to the bending element. In one embodiment, the plurality of pivots may be connected to the substrate such that a portion of the probe may contact the plurality of pivots while the probe tip contacts the device. In another embodiment, the plurality of pivots is connected to the bending element, such that the plurality of pivots may contact the substrate while the probe tip contacts the device. The bending element may also comprise a forked bending element connected to the base, such as the forked bending structure described in co-pending and related patent application Ser. No. 11/855,094. The forked bending structure may include at least a first prong connected to a second prong through a prong connecting structure and a handle connected to the prong connecting structure.
Abstract:
The present invention relates to a process for forming microstructures on a substrate. A plating surface is applied to a substrate. A first layer of photoresist is applied on top of the plating base. The first layer of photoresist is exposed to radiation in a pattern to render the first layer of photoresist dissolvable in a first pattern. The dissolvable photoresist is removed and a first layer of primary metal is electroplated in the area where the first layer of photoresist was removed. The remainder of the photoresist is then removed and a second layer of photoresist is then applied over the plating base and first layer of primary metal. The second layer of photoresist is then exposed to a second pattern of radiation to render the photoresist dissolvable and the dissolvable photoresist is removed. The second pattern is an area that surrounds the primary structure, but it does not entail the entire substrate. Rather it is an island surrounding the primary metal. The exposed surface of the secondary metal is then machined down to a desired height of the primary metal. The secondary metal is then etched away.