Abstract:
A control device for a vehicle continuously variable transmission 4 comprises: inertia phase processing completing means for completing an instruction relating to inertia phase processing before an input rotation speed of the subtransmission mechanism 30 actually reaches an input rotation speed of the second gear position; and torque phase processing starting means for starting an instruction relating to torque phase processing, in which reception of an input torque of the subtransmission mechanism 30 is shifted from a disengagement side frictional engagement element to an engagement side frictional engagement element before the input rotation speed of the subtransmission mechanism 30 actually reaches the input rotation speed of the second gear position, after completing the instruction relating to the inertia phase processing.
Abstract:
The transmission controller changes the gear position of the subtransmission mechanism and varies the speed ratio of the variator in an opposite direction to a speed ratio variation direction of the subtransmission mechanism when the actual through speed ratio passes a predetermined mode switch line. When the improvement in the shift response of the continuously variable transmission is determined to be required and the actual through speed ratio passes the mode switch line from a Low side to the High side, the transmission controller increases a shift speed of the subtransmission mechanism compared with a normal coordinated shift.
Abstract:
The shift control unit executes a control to cause the through speed ratio to follow the final through speed ratio by changing only the speed ratio of the variator if a shift instruction is given from the driver a plurality of times in a row when the manual mode is selected, and advances the start of a change in the speed ratio of the sub-transmission mechanism or accelerates the progression of the change of the speed ratio as compared with the case where the manual mode is not selected when the speed ratio of the variator is maximized or minimized and the through speed ratio cannot follow the final through speed ratio.
Abstract:
When a through speed ratio, which is an overall speed ratio of a variator and a subtransmission mechanism, varies from a larger speed ratio than a mode switch speed ratio to a smaller speed ratio than the mode switch speed ratio, a gear position of the subtransmission mechanism is changed from a first gear position to a second gear position and the speed ratio of the variator is modified to a large speed ratio side. The mode switch speed ratio is set to be equal to a high speed mode Lowest speed ratio.
Abstract:
The present invention provides a method of producing a DNA structure in which multiple quadruplex DNAs are linked, which includes (a) a step of mixing multiple DNA molecules having an antiparallel quadruplex structural part, and at least two single stranded sticky ends extended from the end of the quadruplex structural part, wherein the single stranded sticky end of the each DNA molecule has a base sequence that can form a duplex through interaction with the single stranded sticky end of other DNA molecule.
Abstract:
To provide an electrochromic element, which contains: a first electrode; a second electrode; and an electrolyte provided between the first electrode and the second electrode, wherein the first electrode contains a polymer product obtained through polymerization of an electrochromic composition where the electrochromic composition contains a radical polymerizable compound containing triarylamine.
Abstract:
An electrochromic element is provided. The electrochromic element includes a first electrode, a second electrode facing the first electrode with a gap therebetween, and a color developing layer disposed between the first electrode and the second electrode. The color developing layer includes an electrochromic compound that develops and discharges color by a redox reaction and a compound having an adsorption group adsorptive to the first electrode.
Abstract:
An electrochromic compound represented by the following formula (1) is provided: where each of R1 to R9 and Ar1 to Ar6 independently represents one of a hydrogen atom, a halogen atom, a monovalent organic group, a group in which two or more aryl and/or heteroaryl groups are bound to each other via a covalent bond, a group in which two or more aryl and/or heteroaryl groups are condensed with each other to form a ring, and a polymerizable functional group; and at least one of Ar1 to Ar6 represents an aryl group, a heteroaryl group, a group in which two or more aryl and/or heteroaryl groups are bound to each other via a covalent bond, or a group in which at least two aryl or heteroaryl groups are condensed with each other to form a ring.
Abstract:
To provide an electrochromic compound, represented by the following general formula (I), where Ar1 is a pyridinium ring having a structure represented by the following general formula (IIa), (IIb), or (IIc), where Ar2 is a monovalent heterocyclic ring which may have a substituent, but Ar2 is not a pyridinium ring; R1 to R8 are each independently a monovalent group which may have a functional group, where the monovalent group may have a substituent; A is a monovalent group which may have a functional group, where the monovalent group may have a substituent; and B− is a monovalent anion.
Abstract:
To provide an electrochromic device including: a support; a first electrode formed on the support; a second electrode facing the first electrode, where through-holes are formed in the second electrode; an electrochromic layer disposed in a space between the first electrode and the second electrode; a first electrolyte layer disposed in the space between the first electrode and the second electrode; a second electrolyte layer disposed to communicate with the first electrolyte layer through the through-holes; an inorganic protective layer, which is disposed on a surface of the second electrolyte layer not facing the second electrode, and is configured to shield oxygen and water vapor; and an organic protective layer disposed on a surface of the inorganic protective layer that does not face the second electrolyte layer.