Abstract:
To provide an electrochromic compound, represented by the following general formula (I): where X1, X2, X3, X4, X5, X6, X7 and X8 are each independently a hydrogen atom or a monovalent substituent; R1 and R2 are each independently a monovalent substituent; A− and B− are each independently a monovalent anion; and Y is represented by the following general formula (II) or (III): where X9, X10, X11, X12, X13, X14, X15, X16, X17, and X18 are each independently a hydrogen atom or a monovalent substituent.
Abstract:
Provided is an electrochromic compound represented by the following general formula (I) or (II) where R1 to R13 are each independently a hydrogen atom, a halogen atom, a monovalent organic group, or a polymerizable functional group, and at least one of the R1 to the R13 is a polymerizable functional group.
Abstract:
Provided is an electrochromic display device, including: a pair of electrodes facing each other; an electrochromic layer provided to one of the pair of electrodes: and an electrolytic solution layer provided between the electrodes facing each other, wherein the electrochromic display device includes an yttrium-containing metal oxide layer between the electrochromic layer and the electrode to which the electrochromic layer is provided.
Abstract:
An electrochromic element is provided. The electrochromic element includes a first electrode, a second electrode facing the first electrode with a gap therebetween, and a color developing layer disposed between the first electrode and the second electrode. The color developing layer includes an electrochromic compound that develops and discharges color by a redox reaction and a compound having an adsorption group adsorptive to the first electrode.
Abstract:
To provide an electrochromic compound, represented by the following general formula (I), where Ar1 is a pyridinium ring having a structure represented by the following general formula (IIa), (IIb), or (IIc), where Ar2 is a monovalent heterocyclic ring which may have a substituent, but Ar2 is not a pyridinium ring; R1 to R8 are each independently a monovalent group which may have a functional group, where the monovalent group may have a substituent; A is a monovalent group which may have a functional group, where the monovalent group may have a substituent; and B− is a monovalent anion.
Abstract:
To provide an electrochromic device including: a support; a first electrode formed on the support; a second electrode facing the first electrode, where through-holes are formed in the second electrode; an electrochromic layer disposed in a space between the first electrode and the second electrode; a first electrolyte layer disposed in the space between the first electrode and the second electrode; a second electrolyte layer disposed to communicate with the first electrolyte layer through the through-holes; an inorganic protective layer, which is disposed on a surface of the second electrolyte layer not facing the second electrode, and is configured to shield oxygen and water vapor; and an organic protective layer disposed on a surface of the inorganic protective layer that does not face the second electrolyte layer.
Abstract:
An electrochromic compound, represented by the following general formula (I); where X1 to X4 are each a substituent represented by the following general formula (II), an alkyl group that may contain a functional group, an aromatic hydrocarbon group that may contain a functional group, or a hydrogen atom, and at least two selected from X1 to X4 are the substituents represented by the general formula (II); where R1 to R8 are each independently a hydrogen atom, or a monovalent group that may contain a substituent; B is a substituted or unsubstituted monovalent group that may contain a functional group; A− is a monovalent anion; and m is any of 0 to 3, and R1 to R8, B, and m may each independently be different when a plurality of the substituents represented by the general formula (II) are present.
Abstract:
An electrochromic device, which contains: one support; a first electrode layer formed on the support; a second electrode layer provided to face the first electrode layer; an electrochromic layer provided to be in contact with the first electrode layer or the second electrode layer; a solid electrolyte layer containing inorganic particles, which is filled between the first electrode layer and the second electrode layer, and is provided to be in contact with the electrochromic layer; and a protective layer provided on the second electrode layer.
Abstract:
To provide an electrochromic display element, which contains: a display substrate; a display electrode; an electrochromic layer provided in contact with the display electrode; a counter substrate provided to face the display substrate; a counter electrode; a charge retention layer provided in contact with the counter electrode; and an electrolyte layer filling between the display substrate and the counter substrate, wherein the electrochromic layer contains titanium oxide particles, and metal hydroxide is dispersed on surfaces and in inner parts of the titanium oxide particles.
Abstract:
A control device for a vehicle continuously variable transmission 4 includes: final speed ratio setting means for setting an overall speed ratio of the continuously variable transmission mechanism 20 and the subtransmission mechanism 30 to be reached on the basis of an operating condition of the vehicle as a final speed ratio; shift control means for controlling the continuously variable transmission mechanism 20 and the subtransmission mechanism 30 such that the overall speed ratio aligns with the final speed ratio at a predetermined transient response; stagnation determining means for determining whether or not a stagnation period in which the overall speed ratio stops varying will occur during an upshift; and reduction control means for shortening a time required to advance to an inertia phase from a start of a shift in the subtransmission mechanism 30 following a determination that the stagnation period will occur.