Abstract:
An assembly that includes a barrier film interposed between a first polymeric film substrate and a first major surface of a pressure sensitive adhesive layer is provided. The first polymeric film substrate has a first coefficient of thermal expansion that is, in some embodiments, up to 50 parts per million per Kelvin. The pressure sensitive adhesive layer has a second major surface opposite the first major surface that is disposed on a second polymeric film substrate. The second polymeric film substrate is typically resistant to degradation by ultraviolet light. In some embodiments, the second polymeric film substrate has a second coefficient of thermal expansion that is at least 40 parts per million per Kelvin higher than the first coefficient of thermal expansion. The assembly is transmissive to visible and infrared light.
Abstract:
The invention provides protective articles comprising a backing that comprises a fluorinated polymer and a curable adhesive on at least one layer of the backing. The protective articles of the invention may be used to provide substrates or articles of the invention having a fluorinated surface. The invention also provides methods of preparing such articles, methods of repairing appliqués, and methods of edge sealing appliqués.
Abstract:
An assembly that includes a barrier film interposed between a first polymeric film substrate and a first major surface of a pressure sensitive adhesive layer is provided. The first polymeric film substrate has a first coefficient of thermal expansion that is, in some embodiments, up to 50 parts per million per Kelvin. The pressure sensitive adhesive layer has a second major surface opposite the first major surface that is disposed on a second polymeric film substrate. The second polymeric film substrate is typically resistant to degradation by ultraviolet light. In some embodiments, the second polymeric film substrate has a second coefficient of thermal expansion that is at least 40 parts per million per Kelvin higher than the first coefficient of thermal expansion. The assembly is transmissive to visible and infrared light.
Abstract:
Multi-layer optical film (10) comprising optical layers reflecting at least 50 percent of incident UV light over specified wavelength ranges. Embodiments of the multi-layer optical films are useful, for example, as a UV protective covering.
Abstract:
The present disclosure generally relates to methods of forming barrier assemblies. Some embodiments include application and removal of a protective layer followed by application of a topsheet. Some embodiments include application and removal of a protective layer including a release agent and a monomer.
Abstract:
The present application is directed to a method of reducing delamination in an assembly. The method comprises providing an assembly and limiting visible light exposure to parts of the assembly to maintain a peel force of 20 grams/inch or greater where the light is limited. The assembly comprises an electronic device, a substrate having a first surface and a second surface opposite the first surface, wherein the second surface of the substrate is disposed on the electronic device, a barrier stack disposed on the first surface of the substrate, and a weatherable sheet adjacent the barrier film opposite the substrate. The assembly is transmissive to visible and infrared light.
Abstract:
An applique is provided that includes a fluoropolymer backing, an adhesive on one of the surfaces of the backing and a urethane coating layer on the other surface of the backing.
Abstract:
The present invention provides pressure-sensitive adhesive beads that comprise a tacky pressure-sensitive adhesive core and a non-tacky shell material that surrounds the area wherein the beads are capable of being positioned via magnetic means. The present invention also provides method(s) of preparing adhesive coated substrates using pressure-sensitive adhesive bead(s) that are magnetically responsive, electrostatically responsive or both by using magnetic forces, electrostatic forces or both.
Abstract:
The present application is directed to an assembly comprising an electronic device, and a multilayer film. The multilayer film comprises a barrier stack adjacent the electronic device; and a weatherable sheet adjacent the barrier stack opposite the electronic device. The assembly additionally comprises a protective layer in contact with the electronic device and the weatherable sheet. The present application allows for the combination of any of the disclosed elements.