Abstract:
Vessel perfusion and myocardial blush are determined by analyzing fluorescence signals obtained in a static region-of-interest (ROI) in a collection of fluorescence images of myocardial tissue. The blush value is determined from the total intensity of the intensity values of image elements located within the smallest contiguous range of image intensity values containing a predefined fraction of a total measured image intensity of all image elements within the ROI. Vessel (arterial) peak intensity is determined from image elements located within the ROI that have the smallest contiguous range of highest measured image intensity values and contain a predefined fraction of a total measured image intensity of all image elements within the ROI. Cardiac function can be established by comparing the time differential between the time of peak intensity in a blood vessel and that in a region of neighboring myocardial tissue both pre and post procedure.
Abstract:
An endoscopic video system and method using a camera with a single color image sensor, for example a CCD color image sensor, for fluorescence and color imaging and for simultaneously displaying the images acquired in these imaging modes at video rates in real time is disclosed. The tissue under investigation is illuminated continuously with fluorescence excitation light and is further illuminated periodically using visible light outside of the fluorescence excitation wavelength range. The illumination sources may be conventional lamps using filters and shutters, or may include light-emitting diodes mounted at the distal tip of the endoscope.
Abstract:
An apparatus for providing a light output to an optical guide for illumination of an imaged object including a plurality of solid state light-emitting sources each of which are independently powered and independently controlled, each light-emitting source emitting light at a wavelength which is different from the wavelength emitted by the other light-emitting sources. The apparatus also includes a heat sink configured to thermally couple the plurality of solid state light-emitting sources and provide conduction of heat generated by the plurality of solid state light-emitting sources. The apparatus further includes an optical elements to collect, collimate, and combine the emissions from the plurality of solid state light-emitting sources into a combined beam of light to be optically coupled to the light guide.
Abstract:
An endoscopic video system and method using a camera with a single color image sensor, for example a CCD color image sensor, for fluorescence and color imaging and for simultaneously displaying the images acquired in these imaging modes at video rates in real time is disclosed. The tissue under investigation is illuminated continuously with fluorescence excitation light and is further illuminated periodically using visible light outside of the fluorescence excitation wavelength range. The illumination sources may be conventional lamps using filters and shutters, or may include light-emitting diodes mounted at the distal tip of the endoscope.
Abstract:
An apparatus for providing a light output to an optical guide for illumination of an imaged object including a plurality of solid state light-emitting sources each of which are independently powered and independently controlled, each light-emitting source emitting light at a wavelength which is different from the wavelength emitted by the other light-emitting sources. The apparatus also includes a heat sink configured to thermally couple the plurality of solid state light-emitting sources and provide conduction of heat generated by the plurality of solid state light-emitting sources. The apparatus further includes an optical elements to collect, collimate, and combine the emissions from the plurality of solid state light-emitting sources into a combined beam of light to be optically coupled to the light guide.
Abstract:
An apparatus and method to map the body habitus, without the use of ionizing radiation, and to simultaneously track the position of an ionizing radiation imaging detector with respect to the body habitus map so that the radiotracer distribution of the patient can be fused with the body habitus map and thus provide an anatomical reference for the radiotracer distribution within the patient. A depth camera, capable of imaging a 3-dimensional surface, is attached to an ionizing radiation imaging detector where the relative position between the two is known.
Abstract:
A fluorescence endoscopy video system includes a multi-mode light source that produces light for white light and fluorescence imaging modes. A filter is positioned at the distal end of an imaging endoscope so that the endoscope can produce fluorescence and white light images of a tissue sample.
Abstract:
An applicator suitable for converting a white-light endoscope into an endoscope for combined white-light/fluorescence imaging is disclosed. The applicator facilitates attachment of an optical element, for example an optical filter, to a distal optical port of an endoscope. The applicator engages with alignment feature on the endoscope's distal end and releasably supports the optical element in an opening that is aligned with the optical port. The optical element is released in a proximal direction by pressing down on an actuator.
Abstract:
The application discloses endoscopes and wands, light sources, and other inventions useful for near infrared imaging, particularly for medical purposes. It discloses endoscope or wand devices (260) having transmitting members that transmit between about 95% and 99.9% of the energy at a wavelength within the infrared spectrum. It also discloses wands and endoscopes having at least one channel for transmitting and receiving light in the visible spectrum and at least one channel for transmitting and receiving light in the infrared spectrum.
Abstract:
An imaging system for acquisition of NIR and full-color images includes a light source providing visible light and NIR light to an area under observation, such as living tissue, a camera having one or more image sensors configured to separately detect blue reflectance light, green reflectance light, and combined red reflectance light/detected NIR light returned from the area under observation. A controller in signal communication with the light source and the camera is configured to control the light source to continuously illuminate area under observation with temporally continuous blue/green illumination light and with red illumination light and NIR excitation light. At least one of the red illumination light and NIR excitation light are switched on and off periodically in synchronism with the acquisition of red and NIR light images in the camera.