Abstract:
An improved semiconductor device and method for making it. That semiconductor device includes a first insulating layer, having a low-k dielectric constant that preferably comprises a carbon doped oxide, that is formed on a substrate. The device further includes a second layer, which is formed on the first layer, that has a relatively high dielectric constant and superior mechanical strength. The second layer is preferably under compressive stress. A third layer may be formed on the second layer, which has a relatively low dielectric constant and relatively poor mechanical strength, and a fourth layer may be formed on the third layer, which has a relatively high dielectric constant and superior mechanical strength.
Abstract:
A device to detect polarization of a ferroelectric material comprises a probe tip, a charge amplifier electrically connected with the probe tip to convert a charge coupled to the probe tip from the ferroelectric material into an output voltage. The ferroelectric material is oscillated at a reference signal so that a charge is coupled to the probe tip and converted to an output voltage by the charge amplifier. A lock-in amplifier that receives the reference voltage and applies the reference voltage to the output voltage to extract a signal output representing the polarization.
Abstract:
An electromechanical switch includes an actuation electrode, a cantilever electrode, a contact, a suspended conductor, and a signal line. The actuation electrode is mounted to a substrate, the cantilever electrode is suspended proximate to the actuation electrode, and the contact is mounted to the cantilever electrode. The suspended conductor is coupled to the contact and straddles a portion of the cantilever electrode. The signal line is positioned to form a closed circuit with the contact and the suspended conductor when an actuation voltage is applied between the actuation electrode and the cantilever electrode.
Abstract:
An electromechanical switch includes an actuation electrode, an anchor, a cantilever electrode, a contact, and signal lines. The actuation electrode and anchor are mounted to a substrate. The cantilever electrode is supported by the anchor above the actuation electrode. The contact is mounted to the cantilever electrode. The signal lines are positioned to form a closed circuit with the contact when an actuation voltage is applied between the actuation electrode and the cantilever electrode causing the cantilever electrode to bend towards the actuation electrode in a zipper like movement starting from a distal end of the cantilever electrode.
Abstract:
A film bulk acoustic resonator filter may be formed with a plurality of interconnected series and shunt film bulk acoustic resonators formed on the same membrane. Each of the film bulk acoustic resonators may be formed from a common lower conductive layer which is defined to form the bottom electrode of each film bulk acoustic resonator. A common top conductive layer may be defined to form each top electrode of each film bulk acoustic resonator. A common piezoelectric film layer, that may or may not be patterned, forms a continuous or discontinuous film.
Abstract:
A microelectromechanical system may be enclosed in a hermetic cavity defined by joined, first and second semiconductor structures. The joined structures may be sealed by a solder sealing ring, which extends completely around the cavity. One of the semiconductor structures may have the system formed thereon and an open area may be formed underneath said system. That open area may be formed from the underside of the structure and may be closed by covering with a suitable film in one embodiment.
Abstract:
This application discloses a microelectromechanical (MEMS) switch apparatus comprising an anchor attached to a substrate and an electrically conductive beam attached to the anchor and in electrical contact therewith. The beam comprises a tapered portion having a proximal end and a distal end, the proximal end being attached to the anchor, an actuation portion attached to the distal end of the tapered portion, a tip attached to the actuation portion, the tip having a contact dimple thereon. The switch apparatus also includes an actuation electrode attached to the substrate and positioned between the actuation portion and the substrate. Additional embodiments are also described and claimed.
Abstract:
An electromechanical switch includes an actuation electrode, a cantilever electrode, a contact, a suspended conductor, and a signal line. The actuation electrode is mounted to a substrate, the cantilever electrode is suspended proximate to the actuation electrode, and the contact is mounted to the cantilever electrode. The suspended conductor is coupled to the contact and straddles a portion of the cantilever electrode. The signal line is positioned to form a closed circuit with the contact and the suspended conductor when an actuation voltage is applied between the actuation electrode and the cantilever electrode.
Abstract:
An electromechanical switch includes an actuation electrode, an anchor, a cantilever electrode, a contact, and signal lines. The actuation electrode and anchor are mounted to a substrate. The cantilever electrode is supported by the anchor above the actuation electrode. The contact is mounted to the cantilever electrode. The signal lines are positioned to form a closed circuit with the contact when an actuation voltage is applied between the actuation electrode and the cantilever electrode causing the cantilever electrode to bend towards the actuation electrode in a zipper like movement starting from a distal end of the cantilever electrode.
Abstract:
This application discloses a microelectromechanical (MEMS) switch apparatus comprising an anchor attached to a substrate and an electrically conductive beam attached to the anchor and in electrical contact therewith. The beam comprises a tapered portion having a proximal end and a distal end, the proximal end being attached to the anchor, an actuation portion attached to the distal end of the tapered portion, a tip attached to the actuation portion, the tip having a contact dimple thereon. The switch apparatus also includes an actuation electrode attached to the substrate and positioned between the actuation portion and the substrate. Additional embodiments are also described and claimed.