Abstract:
The present invention provides diagnostic methods for assessing the EMT status of tumor cells, and for predicting the effectiveness of treatment of a cancer patient with an EGFR or IGF-1R kinase inhibitor, utilizing an EMT gene signature index score. The present invention further provides methods for treating patients with cancer that incorporate these methods.
Abstract:
The present invention provides diagnostic and prognostic methods for predicting the effectiveness of treatment of a cancer patient with an EGFR kinase inhibitor. Methods are provided for predicting the sensitivity of tumor cell growth to inhibition by an EGFR kinase inhibitor, comprising assessing whether the tumor cell has undergone an epithelial to mesenchymal transition (EMT), by determining the expression level of epithelial and/or mesenchymal biomarkers, wherein tumor cells that have undergone an EMT are substantially less sensitive to inhibition by EGFR kinase inhibitors. Improved methods for treating cancer patients with EGFR kinase inhibitors that incorporate the above methodology are also provided. Additionally, methods are provided for the identification of new biomarkers that are predictive of responsiveness of tumors to EGFR kinase inhibitors. Furthermore, methods for the identification of agents that restore the sensitivity of tumor cells that have undergone EMT to inhibition by EGFR kinase inhibitors are also provided.
Abstract:
The present invention provides tumor cell preparations for use as models of the EMT process for use in the identification of anti-cancer agents, wherein said tumor cell preparations comprise cells of the epithelial tumor cell line H358, which are stimulated by receptor ligands to induce EMT, or which have been engineered to inducibly express a protein that stimulates EMT. The present invention also provides methods of identifying potential anti-cancer agents by using such tumor cell preparations to identify agents that inhibit EMT, stimulate MET, or inhibit the growth of mesenchymal-like cells. Such agents should be particularly useful when used in conjunction with other anti-cancer drugs such as EGFR and IGF-1R kinase inhibitors, which appear to be less effective at inhibiting tumor cells that have undergone an EMT.
Abstract:
The present invention provides diagnostic and prognostic methods for predicting the effectiveness of treatment of a cancer patient with an EGFR kinase inhibitor. Methods are provided for predicting the sensitivity of tumor cell growth to inhibition by an EGFR kinase inhibitor, comprising assessing whether the tumor cell has undergone an epithelial to mesenchymal transition (EMT), by determining the expression level of epithelial and/or mesenchymal biomarkers, wherein tumor cells that have undergone an EMT are substantially less sensitive to inhibition by EGFR kinase inhibitors. Improved methods for treating cancer patients with EGFR kinase inhibitors that incorporate the above methodology are also provided. Additionally, methods are provided for the identification of new biomarkers that are predictive of responsiveness of tumors to EGFR kinase inhibitors. Furthermore, methods for the identification of agents that restore the sensitivity of tumor cells that have undergone EMT to inhibition by EGFR kinase inhibitors are also provided.
Abstract:
A method and apparatus for monitoring telecommunications network elements, especially where direct access to those network elements is not available. The invention allows a network manager to build and maintain significant relationship information, as well as model the state of network elements with a high degree of accuracy, but based only on the information contained within the transactions built from the network traffic which is being monitored. In particular, it allows the network manager to obtain the same results that would previously have required direct access to an operator's network elements.