Abstract:
Titanium dioxide nanoparticles are formed using a dispersing agent to form nanoparticles with desired size, shape, and uniformity. The titanium dioxide nanoparticles are formed by reacting an inorganic titanium compound with water or ice to form an aqueous titanium compound. The aqueous titanium compound is reacted or combined with a dispersing agent. Titanium dioxide nanoparticles are precipitated to form a suspension. The formation of the titanium dioxide nanoparticles is influenced by the presence of bonding of the dispersing agent. The size of the nanoparticles can be advantageously controlled by selecting the ratio of titanium to dispersing agent. In addition, the titanium dioxide nanoparticles can be used in suspension form or filtered and dried to form a powder.
Abstract:
Supported catalysts include an inorganic solid support such as silica that is functionalized to have inorganic acid functional groups attached thereto. The functionalization of the support material is optimized by (i) limiting the amount of water present during the functionalization reaction, (ii) using a concentrated mineral acid or derivative thereof, and/or (iii) increasing the reaction temperature and/or reaction pressure. The acid-functionalized support material serves as a support for a metal nanoparticle catalyst. The nanocatalyst particles are preferably bonded to the support material through an organic molecule, oligomer, or polymer having functional groups that can bind to both the nanocatalyst particles and to the support material. The supported catalysts can advantageously be used for the direct synthesis of hydrogen peroxide from hydrogen and oxygen feed streams.
Abstract:
Supported nanocatalysts are manufactured by reacting a functionalized support with a plurality of catalyst atoms in the presence of a solvent. Available functional groups on the support material bind to the catalyst atoms and influence nanoparticle formation and/or nanoparticle anchoring. The functionalized support can be manufactured from a support material and a functionalizing agent that has at least two functional groups for bonding individual functionalizing agent molecules both to the support and to the catalyst atoms. Supported palladium nanocatalysts manufactured using the methods of the present invention are particularly useful for performing Heck and Suzuki carbon-carbon coupling reactions.
Abstract:
Titanium dioxide nanoparticles are formed using a dispersing agent to form nanoparticles with desired size, shape, and uniformity. The titanium dioxide nanoparticles are formed by reacting an inorganic titanium compound with water or ice to form an aqueous titanium compound. The aqueous titanium compound is reacted or combined with a dispersing agent. Titanium dioxide nanoparticles are precipitated to form a suspension. The formation of the titanium dioxide nanoparticles is influenced by the presence of bonding of the dispersing agent. The size of the nanoparticles can be advantageously controlled by selecting the ratio of titanium to dispersing agent. In addition, the titanium dioxide nanoparticles can be used in suspension form or filtered and dried to form a powder.
Abstract:
Nanoparticles include a plurality of two or more dissimilar components selected from the group of noble metals, base transition metals, alkali earth metals, and rare earth metals and/or different groups of the periodic table of elements. The two or more dissimilar components are dispersed using a dispersing agent such that the nanoparticles have a substantially uniform distribution of the two or more dissimilar components. The dispersing agents can be poly functional small organic molecules, polymers, or oligomers, or salts of these. The molecules of the dispersing agent bind to the particle atoms to overcome same-component attractions, thereby allowing dissimilar components to form heterogeneous nanoparticles. Dissimilar components such as iron and platinum can be complexed using the dispersing agent to form substantially uniform heterogeneous nanoparticles. The nanoparticles can be used alone or applied to a support. At least a portion of the dispersing agent can be removed by reduction and/or oxidation.
Abstract:
Multicomponent nanoparticles include two or more dissimilar components selected from different members of the group of noble metals, base transition metals, alkali earth metals, and rare earth metals and/or different groups of the periodic table of elements. The two or more dissimilar components are dispersed using a polyfunctional dispersing agent such that the multicomponent nanoparticles have a substantially uniform distribution of the two or more dissimilar components. The polyfunctional dispersing agent may include organic molecules, polymers, oligomers, or salts of these. The molecules of the dispersing agent bind to the dissimilar components to overcome same-component attraction, thereby allowing the dissimilar components to form multicomponent nanoparticles. Dissimilar components such as iron and platinum can be alloyed together using the dispersing agent to form substantially uniform multicomponent nanoparticles, which can be used alone or with a support. At least a portion of the dispersing agent is removed by reduction and/or oxidation.
Abstract:
An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.
Abstract:
Tobacco products and articles are disclosed that include a nanoparticle catalyst. The nanoparticles are capable of degrading undesirable small molecules in tobacco smoke. The nanoparticle catalyst includes a dispersing agent that inhibits the deactivation of the nanoparticle catalyst. One embodiment disclosed has a dispersing agent that anchors the nanoparticles to a support material thereby preventing agglomeration of the nanoparticles. The dispersed nanoparticles exhibit higher activity and reduce the required loading in the tobacco material.
Abstract:
Disclosed are nanoparticles formed from a plurality of two or more different components. The two or more components are dispersed using a dispersing agent such that the nanoparticles have a substantially uniform distribution of the two or more components. The dispersing agents can be poly functional small organic molecules, polymers, or oligomers, or salts of these. The molecules of the dispersing agent bind to the particle atoms to overcome like-component attractions, thereby allowing different and/or dissimilar components to form heterogeneous nanoparticles. In one embodiment, dissimilar components such as iron and platinum are complexed using the dispersing agent to form substantially uniform heterogeneous nanoparticles. Methods are also disclosed for making the multicomponent nanoparticles. The methods include forming suspensions of two or more components complexed with the dispersing agent molecules. The suspensions can also be deposited on a support material and/or anchored to the support.
Abstract:
Supported catalysts include a solid support such as silica that is functionalized to have inorganic acid functional groups attached thereto. Active catalyst particles are supported on the functionalized support material. The acid functionalized support material is made by reacting a solid support with an inorganic acid containing agent such as sulfuric acid or para-toluene sulfonic acid. An organic anchoring agent is used to form and anchor catalyst nanoparticles to the acid functionalized support material. The supported catalyst can be sized and shaped for use in any type of reactor, including a fixed bed or fluidized bed reactor. The methods of the present invention also include a process for the direct synthesis of hydrogen peroxide using the supported catalyst.