Abstract:
An optical interleaver for use in a range of telecommunications applications including optical multiplexers/demultiplexers and optical routers. The optical device includes an optical processing loop which allows multi-stage performance characteristics to be achieved with a single physical filtration stage. Optical processing on the first leg and second legs of the loop is asymmetrical thereby improving the integrity of the optical signals by effecting complementary chromatic dispersion on the first and second legs. A fundamental filter cell within the interleaver filters optical signals propagating on each of the two legs of the optical loop which intersects the fundamental filter cell.
Abstract:
Apparatus and methods for passing a focused laser beam through a thin ferrofluid cell creates a spatial distribution in the refractive index of the ferrofluid and generates a diffraction ring patterns. Using a pair of perpendicularly placed ferrofluid cells, two sets of diffraction ring patterns can be produced on two viewing screens. Deformations in the diffraction patterns due to an acceleration can be viewed on the screens, providing a ferrofluid accelerometer. By applying an electric or a magnetic field on a thin ferrofluid sample, the light passing through the sample can be modulated by the field, providing a light modulator. The apparatus and method has applications for detecting acceleration information within a gyroscope and for use in toys.
Abstract:
A multi-laser transmitter optical subassembly may include N number of lasers, where each laser is configured to generate an optical signal with a unique wavelength. The transmitter optical subassembly may further include a focusing lens and a filter assembly. The filter assembly may combine the optical signals into a combined signal that is received by the focusing lens. The filter assembly may include N−1 number of filters. Each of the filters may pass at least one of the optical signals and reflect at least one of the optical signals. The filters may be low pass filters, high pass filters, or a combination thereof.
Abstract:
Multi-laser transmitter optical subassemblies (TOSAs) for optoelectronic modules. In one example embodiment, a multi-laser TOSA includes first and second lasers configured to generate first and second optical signals, respectively, a polarization beam combiner (PBC), first and second collimating lenses positioned between the first and second lasers, respectively, and the PBC, a half waveplate positioned between the first laser and the PBC, and a focusing lens. The half waveplate is configured to rotate the polarization of the first optical signal. The PBC is configured to combine the first and second optical signals and transmit the combined first and second optical signals toward the focusing lens.
Abstract:
Optical triplexers are disclosed. The optical triplexers include an optical fiber, a first ball lens optically coupling a first optical signal between a first opto-electronic device and a first wavelength selective filter, and a second ball lens optically coupling a second optical signal between a second opto-electronic device and the first wavelength selective filter. The optical triplexers further include a second wavelength selective filter optically coupling the first and second optical signals between the first wavelength selective filter and a third ball lens and a fourth ball lens optically coupling a third optical signal between a third optical signal between a third opto-electronic device and the second frequency selective filter. The second wavelength selective filter optical couples the third optical signal between the fourth ball lens and the third ball lens. Thus, each of the optical signals are selectively coupled between one of the opto-electronic devices and the optical fiber.
Abstract:
Optical triplexers are disclosed. The optical triplexers include an optical fiber, a first ball lens optically coupling a first optical signal between a first opto-electronic device and a first wavelength selective filter, and a second ball lens optically coupling a second optical signal between a second opto-electronic device and the first wavelength selective filter. The optical triplexers further include a second wavelength selective filter optically coupling the first and second optical signals between the first wavelength selective filter and a third ball lens and a fourth ball lens optically coupling a third optical signal between a third optical signal between a third opto-electronic device and the second frequency selective filter. The second wavelength selective filter optical couples the third optical signal between the fourth ball lens and the third ball lens. Thus, each of the optical signals are selectively coupled between one of the opto-electronic devices and the optical fiber.
Abstract:
An optical interleaver for use in a range of telecommunications applications including optical multiplexers/demultiplexers and optical routers. The optical device includes an optical processing loop which allows multi-stage performance characteristics to be achieved with a single physical filtration stage. Optical processing on the first leg and second legs of the loop is asymmetrical thereby improving the integrity of the optical signals by effecting complementary chromatic dispersion on the first and second legs. A fundamental filter cell within the interleaver filters optical signals propagating on each of the two legs of the optical loop which intersects the fundamental filter cell.
Abstract:
This disclosure concerns low insertion loss optical circulators. In one example, the optical circulator has four ports and includes a polarization dividing and combining element that is positioned adjacent the first and fourth ports and is adapted to divide a beam of light into two beams of light of orthogonal polarizations. The polarization dividing and combining element is also adapted to combine two beams of light of orthogonal polarizations into one beam of light. The optical circulator also includes a Faraday rotator positioned near the second port, and a Faraday rotator positioned near the third port. The Faraday rotator rotates beams of light before or after the pass through the polarization dividing and combining elements.
Abstract:
A package for maintaining alignment of components includes a frame and a beam with the beam attached to the frame and one end of the beam. One or more components are mounted to the beam. The frame and a portion of the beam are separated from each other by a channel which allows portions of the beam to flex substantially independently of the frame when a force is applied to the frame. Thus, the effects resulting from forces applied to the frame are not experienced by the beam, or are at least attenuated, so that the alignment of the components mounted on the beam is substantially preserved.