Abstract:
The invention provides a method of receiving and/or transmitting information in a well drilled in a geological formation between a first location and a second location, the well comprising a casing communicating with the geological formation. The method comprises placing a first transducer at a first location, placing a second transducer at a second location. Transmitting an electric signal between the first and second transducers.
Abstract:
The present invention relates to a memory management unit (MMU) for storing data values, said memory management unit comprising a memory unit (IM) which is adapted to store temporarily at least two sets of data values; and a controller (CTRL) which is configured such that it is able to store a first set of data values in a first area of the memory unit, and to store a second set of data values spatially adjacent to the first set of data values in a horizontal and/or in a vertical direction in such a way that a first part of the second set of data values is stored in a second area of the memory unit adjacent to the first area in a horizontal and/or in a vertical direction, respectively, and that the other part of the second set of data values to be stored which exceeds the memory unit size in a horizontal and/or in a vertical direction, respectively, is stored in at least one other area of the memory unit according to a torus principle.
Abstract:
The present invention provides a method of forming a structure produced from semiconductor materials with the structure having a substrate layer and an insulating layer, and the method including the steps of creating the insulating layer involving constituting an oxidizable layer on the substrate layer and oxidizing the oxidizable layer. The method includes the steps of providing a thin elemental insulating layer at a mean thickness of 20 nm or less upon a substrate layer; providing an oxidizable layer upon the insulating layer; thermally oxidizing the oxidizable layer so that the combination of the oxidized oxidizable layer and the thin elemental insulating layer provides a desired thickness of the insulating layer of the structure.
Abstract:
A pipeline-type serial multiplier having a cellular structure, each cell comprising an adder which operates on 3 one-bit data x, y, c and which determines the result v modulo 2 and the carry c.sub.o of the addition of x, y, and c. Each adder simultaneously determines a data c.sub.1 which is the modulo 2 result of the addition of x, y, c.sub.o. This enables the exact final result of a multiplication of a data A of n bits by a data B of p bits to be obtained in two successive segments: a segment L which is formed by the p bits of lowest digital weight and a segment H which is formed by the n bits of the highest weight. The output rate is F/n, where F is the clock frequency. The multiplier circuits can be cascaded under the control of an external signal. They can also be connected in parallel in order to add the results of two multiplications.
Abstract:
Video graphics system which, by means of a graphics cursor, permits the identification of encoded surfaces of images represented on a screen. In order to do this, there are added to the parameters of the encoded surface, for each surface, an identifier which can be read by slices in the course of readings effected on a plurality of successive frames. An identification memory permits the accumulation of all the slices until the complete acquisition of the identifier. This situation is brought to the attention of the user.
Abstract:
A method of producing a substrate that has a transfer crystalline layer transferred from a donor wafer onto a support. The transfer layer can include one or more foreign species to modify its properties. In the preferred embodiment an atomic species is implanted into a zone of the donor wafer that is substantially free of foreign species to form an embrittlement or weakened zone below a bonding face thereof, with the weakened zone and the bonding face delimiting a transfer layer to be transferred. The donor wafer is preferably then bonded at the level of its bonding face to a support. Stresses are then preferably applied to produce a cleavage in the region of the weakened zone to obtain a substrate that includes the support and the transfer layer. Foreign species are preferably diffused into the thickness of the transfer layer prior to implantation or after cleavage to modify the properties of the transfer layer, preferably its electrical or optical properties. The preferred embodiment produces substrates with a thin InP layer rendered semi-insulating by iron diffusion.
Abstract:
A well instrumentation system, comprising: a power and data supply; and a plurality of functional units attached to the power and data supply and distributed throughout the well, characterised in that the power and data supply comprises first and second substantially identical cables, and in that each unit comprises a first power supply channel and a first data channel connected to the first cable, a second power supply channel and a second data channel connected to the second cable, and a functional module which draws power from the first power supply channel or the second power channel module, and data from the first data channel or the second data channel. The power and data supply can comprise a surface unit that can be selectably connected to either the first or second cable. The selection of connection of the surface unit to one or other cable is effective to select the corresponding power and data channels in the functional units.
Abstract:
A method of recycling a donor wafer after detaching at least one useful layer is provided, the donor wafer comprising successively a substrate, a buffer structure and, before detachment, a useful layer. The method comprises employing mechanical means to remove part of the donor wafer on the side where the detachment took place, such that, after removal of substance, there remains at least part of the buffer structure capable of being reused as at least part of a buffer structure during a subsequent detachment of a useful layer. The present document also relates to methods of detaching a thin layer from a donor wafer which can be recycled according to the invention, as well as donor wafers which can be recycled in accordance with the invention.
Abstract:
A method of recycling a donor wafer after detaching at least one useful layer is provided, the donor wafer comprising successively a substrate, a buffer structure and, before detachment, a useful layer. The method includes removal of substance relating to part of the donor wafer on the side where the detachment took place, such that, after removal of substance, there remains at least part of the buffer structure capable of being reused as at least part of a buffer structure during a subsequent detachment of a useful layer. The present document also relates to a method of producing a donor wafer which can be recycled according to the invention, methods of detaching a thin layer from a donor wafer which can be recycled according to the invention, and donor wafers which can be recycled according to the invention.