Deposition of SiN
    11.
    发明授权

    公开(公告)号:US11367613B2

    公开(公告)日:2022-06-21

    申请号:US16987961

    申请日:2020-08-07

    Abstract: Methods and precursors for forming silicon nitride films are provided. In some embodiments, silicon nitride can be deposited by atomic layer deposition (ALD), such as plasma enhanced ALD. In some embodiments, deposited silicon nitride can be treated with a plasma treatment. The plasma treatment can be a nitrogen plasma treatment. In some embodiments the silicon precursors for depositing the silicon nitride comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%). In some embodiments, a method for depositing silicon nitride films comprises a multi-step plasma treatment.

    Deposition of SiN
    12.
    发明申请
    Deposition of SiN 审中-公开

    公开(公告)号:US20190295838A1

    公开(公告)日:2019-09-26

    申请号:US16381634

    申请日:2019-04-11

    Abstract: Methods and precursors for forming silicon nitride films are provided. In some embodiments, silicon nitride can be deposited by atomic layer deposition (ALD), such as plasma enhanced ALD. In some embodiments, deposited silicon nitride can be treated with a plasma treatment. The plasma treatment can be a nitrogen plasma treatment. In some embodiments the silicon precursors for depositing the silicon nitride comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%). In some embodiments, a method for depositing silicon nitride films comprises a multi-step plasma treatment.

    Formation of SiN thin films
    13.
    发明授权

    公开(公告)号:US10410857B2

    公开(公告)日:2019-09-10

    申请号:US14834290

    申请日:2015-08-24

    Abstract: Methods of forming silicon nitride thin films on a substrate in a reaction space under high pressure are provided. The methods can include a plurality of plasma enhanced atomic layer deposition (PEALD) cycles, where at least one PEALD deposition cycle comprises contacting the substrate with a nitrogen plasma at a process pressure of 20 Torr to 500 Torr within the reaction space. In some embodiments the silicon precursor is a silyl halide, such as H2SiI2. In some embodiments the processes allow for the deposition of silicon nitride films having improved properties on three dimensional structures. For example, such silicon nitride films can have a ratio of wet etch rates on the top surfaces to the sidewall of about 1:1 in dilute HF.

    Deposition of SiN
    14.
    发明授权

    公开(公告)号:US10262854B2

    公开(公告)日:2019-04-16

    申请号:US15706435

    申请日:2017-09-15

    Abstract: Methods and precursors for forming silicon nitride films are provided. In some embodiments, silicon nitride can be deposited by atomic layer deposition (ALD), such as plasma enhanced ALD. In some embodiments, deposited silicon nitride can be treated with a plasma treatment. The plasma treatment can be a nitrogen plasma treatment. In some embodiments the silicon precursors for depositing the silicon nitride comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%). In some embodiments, a method for depositing silicon nitride films comprises a multi-step plasma treatment.

    Deposition of SiN
    15.
    发明申请
    Deposition of SiN 审中-公开

    公开(公告)号:US20170372886A1

    公开(公告)日:2017-12-28

    申请号:US15426593

    申请日:2017-02-07

    Abstract: Methods and precursors for forming silicon nitride films are provided. In some embodiments, silicon nitride can be deposited by atomic layer deposition (ALD), such as plasma enhanced ALD. In some embodiments, deposited silicon nitride can be treated with a plasma treatment. The plasma treatment can be a nitrogen plasma treatment. In some embodiments the silicon precursors for depositing the silicon nitride comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%). In some embodiments, a method for depositing silicon nitride films comprises a multi-step plasma treatment.

    Si precursors for deposition of SiN at low temperatures
    17.
    发明授权
    Si precursors for deposition of SiN at low temperatures 有权
    Si前体,用于在低温下沉积SiN

    公开(公告)号:US09564309B2

    公开(公告)日:2017-02-07

    申请号:US14167904

    申请日:2014-01-29

    Abstract: Methods and precursors for depositing silicon nitride films by atomic layer deposition (ALD) are provided. In some embodiments the silicon precursors comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%).

    Abstract translation: 提供了通过原子层沉积(ALD)沉积氮化硅膜的方法和前体。 在一些实施方案中,硅前体包含碘配体。 当沉积到诸如FinFETS或其它类型的多栅极FET的三维结构上时,氮化硅膜可以具有相对均匀的垂直和水平部分的蚀刻速率。 在一些实施方案中,本公开的各种氮化硅膜具有小于具有稀释HF(0.5%)的热氧化物去除速率的一半的蚀刻速率。

    Si PRECURSORS FOR DEPOSITION OF SiN AT LOW TEMPERATURES
    18.
    发明申请
    Si PRECURSORS FOR DEPOSITION OF SiN AT LOW TEMPERATURES 有权
    Si在低温下沉积SiN的前驱体

    公开(公告)号:US20140273528A1

    公开(公告)日:2014-09-18

    申请号:US13830084

    申请日:2013-03-14

    Abstract: Methods and precursors for depositing silicon nitride films by atomic layer deposition (ALD) are provided. In some embodiments the silicon precursors comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%).

    Abstract translation: 提供了通过原子层沉积(ALD)沉积氮化硅膜的方法和前体。 在一些实施方案中,硅前体包含碘配体。 当沉积到诸如FinFETS或其它类型的多栅极FET的三维结构上时,氮化硅膜可以具有相对均匀的垂直和水平部分的蚀刻速率。 在一些实施方案中,本公开的各种氮化硅膜具有小于热稀释HF(0.5%)的热氧化物去除速率的一半的蚀刻速率。

    Deposition of SiN
    19.
    发明授权

    公开(公告)号:US10741386B2

    公开(公告)日:2020-08-11

    申请号:US16381634

    申请日:2019-04-11

    Abstract: Methods and precursors for forming silicon nitride films are provided. In some embodiments, silicon nitride can be deposited by atomic layer deposition (ALD), such as plasma enhanced ALD. In some embodiments, deposited silicon nitride can be treated with a plasma treatment. The plasma treatment can be a nitrogen plasma treatment. In some embodiments the silicon precursors for depositing the silicon nitride comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%). In some embodiments, a method for depositing silicon nitride films comprises a multi-step plasma treatment.

Patent Agency Ranking