Abstract:
An engine control system for a homogeneous charge compression ignition (HCCI) engine includes a position determination module, a position correction module, and a valve control module. The position determination module determines an initial position of an exhaust gas recirculation (EGR) valve based on a predetermined function of a desired EGR flow, intake manifold pressure, exhaust manifold pressure, and exhaust gas temperature. The position correction module determines a position correction for the EGR valve based on pressure in a cylinder of the HCCI engine. The valve control module commands the EGR valve to the initial position during a transition from spark ignition (SI) combustion to HCCI combustion, and commands the EGR valve to a final position within a predetermined period after the transition, wherein the final position includes a sum of the initial position and the position correction.
Abstract:
A valve control system for an internal combustion engine includes a valve actuation system. The valve actuation system includes lift control valves that actuate at least one of an intake valve and an exhaust valve between N open lift modes, where N is an integer greater than one. A control module enables transitioning of at least one of the intake valve and the exhaust valve between the open lift modes. The control module synchronizes transitions between the N open lift modes with crankshaft and valvetrain timing. The control module generates an engine position synchronization signal based on the transitioning.
Abstract:
An engine control system for a homogeneous charge compression ignition (HCCI) engine includes a position determination module, a position correction module, and a valve control module. The position determination module determines an initial position of an exhaust gas recirculation (EGR) valve based on a predetermined function of a desired EGR flow, intake manifold pressure, exhaust manifold pressure, and exhaust gas temperature. The position correction module determines a position correction for the EGR valve based on pressure in a cylinder of the HCCI engine. The valve control module commands the EGR valve to the initial position during a transition from spark ignition (SI) combustion to HCCI combustion, and commands the EGR valve to a final position within a predetermined period after the transition, wherein the final position includes a sum of the initial position and the position correction.
Abstract:
A method and system for controlling an engine includes a homogenous charge compression ignition (HCCI) mode control module that operates an engine in HCCI mode and a condition monitor module that monitors operating conditions of the engine. The control module also includes a condition predictor module that generates a first predicted condition of a catalyst in response to the operating conditions of the engine. A comparison module compares the first predicted condition to a first threshold. A spark injection mode control module operates the engine in a spark injection mode in response to comparing.
Abstract:
A valve control system for an internal combustion engine includes a valve actuation system. The valve actuation system includes at least one of first and second configurations. The first configuration includes a shared lift control valve that actuates an intake valve and an exhaust valve between N open lift modes, where N is an integer greater than one. A second configuration includes a first lift control valve that actuates the intake valve and not the exhaust valve and a second lift control valve that actuates the exhaust valve and not the intake valve between the N open lift modes. A control module that enables transitioning of at least one of the intake and exhaust valves between the N open lift modes for the first and second configurations.
Abstract:
A method and system for controlling an engine includes a spark ignition (SI) control module operating the engine in a spark ignition mode in a high lift valve state and a pre-HCCI control module entering a matching state when homogeneous charge compression ignition (HCCI) mode conditions are met. When a matching condition is met, the pre-HCCI control module enters a pre-homogeneous charge compression ignition mode and performs spark retardation, stratified operation or lean operation and commands a low lift valve state. The system also includes an HCCI control module entering an HCCI mode and when in the low lift valve state.
Abstract:
A method for transitioning a spark-ignition direct injection internal combustion engine between a controlled auto-ignition combustion mode and a homogeneous spark-ignition combustion mode includes operating the engine in a stratified-charge spark-ignition combustion mode during the transitioning.
Abstract:
An engine control system and method for a displacement on demand internal combustion engine includes a throttle preload signal generator that outputs a throttle preload area signal having a base portion and ramp out portion. A combining circuit combines the throttle preload area signal with a current throttle area signal to generate a throttle preload difference signal that adjusts throttle area to smooth transitions during at cylinder deactivation. The engine control system smoothes the transition between activated and inactivated modes by increasing throttle area and manifold pressure when transitioning between activated and deactivated modes.
Abstract:
An engine control system and method smoothes torque during transitions in a displacement on demand engine. A torque loss estimator generates a torque loss signal based on torque loss due to at least one of friction, pumping and accessories. A pedal torque estimator generates a pedal torque signal. An idle torque estimator generates an idle torque signal. A summing circuit generates a difference between the pedal torque signal and the idle torque and the torque loss signals and outputs a desired brake torque signal.
Abstract:
A control system and method for operating an engine includes a threshold determination module that determines a plurality of combustion mode thresholds based on the engine speed and engine temperature. The control module also includes a transition module that compares the engine load and the plurality of combustion mode thresholds and changes a combustion mode of the engine in response to comparing the engine load and the plurality of combustion mode thresholds.