Abstract:
Asymmetric transistors may be formed by creating pocket implants on one source-drain terminal of a transistor and not the other. Asymmetric transistors may also be formed using dual-gate structures having first and second gate conductors of different work functions. Stacked transistors may be formed by stacking two transistors of the same channel type in series. One of the source-drain terminals of each of the two transistors is connected to a common node. The gates of the two transistors are also connected together. The two transistors may have different threshold voltages. The threshold voltage of the transistor that is located higher in the stacked transistor may be provided with a lower threshold voltage than the other transistor in the stacked transistor. Stacked transistors may be used to reduce leakage currents in circuits such as memory cells. Asymmetric transistors may also be used in memory cells to reduce leakage.
Abstract:
An integrated circuit with electrically programmable fuse circuitry coupled to a programming transistor is provided. The programming transistor may be a metal-oxide-semiconductor transistor that is separated from other circuitry in an integrated circuit substrate with shallow trench isolation. The electrically programmable fuse circuitry may be formed in a second layer above the integrated circuit substrate using a conductive material which may be tungsten-based. This second layer may further include interconnect wires made from the same conductive material. The electrically programmable fuse may be coupled to the programming transistor through vias and routing paths in a fourth layer above the integrated circuit substrate. The routing paths in the fourth layer may be made from a conductive material which may be different than the fuse conductive material used to form the programmable fuse circuitry.
Abstract:
Integrated circuits with memory cells are provided. A memory cell may include first and second cross-coupled inverting circuits configured to store a single data bit. The first inverting circuit may have an output serving as a first data storage node for the memory cell, whereas the second inverting circuit may have an output serving as a second data storage node for the memory cell. Access transistors may be coupled between the first and second data storage nodes and corresponding data lines. Each of the first and second inverting circuit may have a pull-down transistor and at least two pull-up transistors stacked in series. The pull-down transistors may have body terminals that are reverse biased to help reduce leakage current through the first and second inverting circuits. The memory cell may be formed using a narrower two-gate configuration or a wider four-gate configuration.