Abstract:
The invention relates to a device for generating a sensor signal, the profile thereof depending on the position of a magnetic field-generating element relative to the device, with at least two magnetically sensitive sensors disposed along a measurement path, wherein a support field device, which generates a magnetic support field in the magnetically sensitive sensors, has at least in the magnetically sensitive sensors an essentially identical direction and an essentially homogeneous field strength.
Abstract:
Laser machining system (60) comprises a high-power laser (61) for generating a high-power pump laser beam (HP-MM), control signal laser (62) for generating a control signal laser beam (SS), an optical fibre (64) leading from the two lasers to a laser machining head (63). The optical fibre has an SRS amplifier fibre (65) with an inner fibre core (65a) of higher brilliance and with an outer fibre core (65b) of lower brilliance surrounding the inner fibre core. The control signal laser beam (SS) is coupled into the inner fibre core and the pump laser beam (HP-MM) is coupled into the outer fibre core. The radiation component converted from the outer fibre core into the inner fibre core due to the SRS amplification is adjusted by means of the coupled-in power of the control signal laser beam (SS) to adjust the brilliance of the machining laser beam leaving the SRS amplifier fibre.
Abstract:
A method for producing an electrical component which includes at least two electrical contacts and nanoparticles which are arranged on a substrate and which are made of an electrically conductive material, nanoparticles made of a magnetic material and/or nanoparticles made of a magnetisable material, an ink containing the nanoparticles and/or nanoparticles surrounded by a cover, wherein the nanoparticles are deposited on the substrate according to a printing method.
Abstract:
An F/theta lens system for focusing high-power laser radiation in a flat image field including at least two lenses. The at least two lenses are arranged sequentially in a beam path, where the at least two lenses are made from a material that is stable when exposed to laser radiation having a power of more than 1 kW, and at least one of the lenses has at least one aspherical lens surface.
Abstract:
A beam shaping optical arrangement combines three incoming laser beams that are mutually laterally offset in two orthogonal directions (X and Y), including an incoming first central laser beam and second and third incoming beams laterally offset in the X direction on either side of the central beam, into one outgoing combined laser beam. The arrangement includes two lateral displacement optical units though which the laterally offset incoming beams are transmitted and that laterally displace the two laterally offset incoming beams along the X direction towards the incoming central beam but which do not laterally offset the incoming central beam. The lateral displacement units include a material having a higher refractive index than a medium located in an optical path of the central laser beam, and the optical path length traversed by the incoming laterally offset laser beams is selected such that, after transmission though the optical units, the diameters of the central laser beam and the laterally offset laser beams are approximately equal at least in the X direction, and a divergence of the central laser beam is approximately equal to a divergence of the laterally offset laser beams.
Abstract:
In order to improve a laser amplification system, comprising a solid-state body having a laser-active medium, a pumping radiation source for generating a pumping radiation field which passes through the solid-state body several times, an optical pumping radiation imaging means which is arranged between the pumping radiation source and the solid-state body and focuses a leg of the pumping radiation field entering the solid-state body onto the solid-state body and at least one optical refocusing means which focuses a leg of the pumping radiation field exiting from the solid-state body onto the solid-state body again in the form of a leg entering the solid-state body and different to the outgoing leg, in such a manner that as high a pumping radiation power density as possible can be generated in the solid-state body with as little resources as possible it is suggested that the optical refocusing means reshape the leg exiting from the solid-state body into an intermediately collimated leg and reshape the intermediately collimated leg again into the leg entering the solid-state body again and focused onto it.
Abstract:
The invention pertains to a remote-controlled miniature aircraft with at least one lift surface (17), with at least one pair of propeller drives (12, 13) and with a weight element (20), the position of which can be varied in the longitudinal direction of the miniature aircraft (10) in order to change the center of gravity of the miniature aircraft (10). In order to realize a more compact construction with improved flying characteristics, the lift surface (17) of the miniature aircraft (10) is arranged above a plane defined by the rotational axes of the propeller drives (12, 13) in order to generate a lifting force for taking off and/or landing from a standstill.
Abstract:
A method for producing an electrical component which includes at least two electrical contacts and nanoparticles which are arranged on a substrate and which are made of an electrically conductive material, nanoparticles made of a magnetic material and/or nanoparticles made of a magnetisable material, an ink containing the nanoparticles and/or nanoparticles surrounded by a cover, wherein the nanoparticles are deposited on the substrate according to a printing method.
Abstract:
The invention relates to a device for generating a sensor signal, the profile thereof depending on the position of a magnetic field-generating element relative to the device, with at least two magnetically sensitive sensors disposed along a measurement path, wherein a support field device, which generates a magnetic support field in the magnetically sensitive sensors, has at least in the magnetically sensitive sensors an essentially identical direction and an essentially homogeneous field strength.
Abstract:
A hybrid drive for motor vehicle has at least one combustion engine, an electric machine and an electric energy accumulator (10). The electric energy accumulator (10) is dischargeable by the electric machine during the motor operation and is chargeable by the electric machine during the generator operation thereof. The air conditioning system has at least one compressor (11), a condenser (12) and a main evaporator (13) that provides cooling air (16) to be supplied to a passenger compartment (17) of the motor vehicle. An additional evaporator (18) is connected in parallel to the main evaporator (13) and supplies cooling air (19) to the electric energy accumulator (10) of the hybrid drive.