Abstract:
Methods and apparatus for a predictive rendering component that may generate a rendering of a character based at least in part on predictive information regarding the background into which the character is to be rendered. Using such predictive information, the predictive rendering component may produce a rendering of a character that blends into the character background more smoothly than if the predictive background information were not used. In this way, the predictive rendering component improves upon previous implementations of font smoothing.
Abstract:
A head-mountable display device includes a housing defining a front opening and a rear opening, a display screen disposed in the front opening, a display assembly disposed in the rear opening, a first securement strap coupled to the housing, the first securement strap including a first electronic component, a second securement strap coupled to the housing, the second securement strap including a second electronic component, and a securement band extending between and coupled to the first securement strap and the second securement strap.
Abstract:
A head-mountable display device includes a housing defining a front opening and a rear opening, a display screen disposed in the front opening, a display assembly disposed in the rear opening, a first securement strap coupled to the housing, the first securement strap including a first electronic component, a second securement strap coupled to the housing, the second securement strap including a second electronic component, and a securement band extending between and coupled to the first securement strap and the second securement strap.
Abstract:
A mixed reality system including a head-mounted display (HMD) and a base station. Information collected by HMD sensors may be transmitted to the base via a wired or wireless connection. On the base, a rendering engine renders frames including virtual content based in part on the sensor information, and an encoder compresses the frames according to an encoding protocol before sending the frames to the HMD over the connection. Instead of using a previous frame to estimate motion vectors in the encoder, motion vectors from the HMD and the rendering engine are input to the encoder and used in compressing the frame. The motion vectors may be embedded in the data stream along with the encoded frame data and transmitted to the HMD over the connection. If a frame is not received at the HMD, the HMD may synthesize a frame from a previous frame using the motion vectors.
Abstract:
A mixed reality system including a head-mounted display (HMD) and a base station. Information collected by HMD sensors may be transmitted to the base via a wired or wireless connection. On the base, a rendering engine renders frames including virtual content based in part on the sensor information, and an encoder compresses the frames according to an encoding protocol before sending the frames to the HMD over the connection. Instead of using a previous frame to estimate motion vectors in the encoder, motion vectors from the HMD and the rendering engine are input to the encoder and used in compressing the frame. The motion vectors may be embedded in the data stream along with the encoded frame data and transmitted to the HMD over the connection. If a frame is not received at the HMD, the HMD may synthesize a frame from a previous frame using the motion vectors.
Abstract:
A mixed reality system that includes a device and a base station that communicate via a wireless connection The device may include sensors that collect information about the user's environment and about the user. The information collected by the sensors may be transmitted to the base station via the wireless connection. The base station renders frames or slices based at least in part on the sensor information received from the device, encodes the frames or slices, and transmits the compressed frames or slices to the device for decoding and display. The base station may provide more computing power than conventional stand-alone systems, and the wireless connection does not tether the device to the base station as in conventional tethered systems. The system may implement methods and apparatus to maintain a target frame rate through the wireless link and to minimize latency in frame rendering, transmittal, and display.
Abstract:
Systems, computer readable media, and methods for printing of 3D objects in color are disclosed. In general, a 3D object may be produced and colored by a 3D printer using the same digital 3D model. The digital model for a desired 3D object may be revised to include a process for coloring the object by the 3D printer. In one embodiment, this may involve coloring to the object after it has been made. In an alternative embodiment, color may be added as the object is being made. Because the 3D model provides knowledge of the surface, contours and all the coordinates of the 3D object being printed, the object can be colored using the same digital model.
Abstract:
A head-mountable display device includes a housing defining a front opening and a rear opening, a display screen disposed in the front opening, a display assembly disposed in the rear opening, a first securement strap coupled to the housing, the first securement strap including a first electronic component, a second securement strap coupled to the housing, the second securement strap including a second electronic component, and a securement band extending between and coupled to the first securement strap and the second securement strap.
Abstract:
A head-mountable display device includes a housing defining a front opening and a rear opening, a display screen disposed in the front opening, a display assembly disposed in the rear opening, a first securement strap coupled to the housing, the first securement strap including a first electronic component, a second securement strap coupled to the housing, the second securement strap including a second electronic component, and a securement band extending between and coupled to the first securement strap and the second securement strap.
Abstract:
Methods and apparatus for a predictive rendering component that may generate a rendering of a character based at least in part on predictive information regarding the background into which the character is to be rendered. Using such predictive information, the predictive rendering component may produce a rendering of a character that blends into the character background more smoothly than if the predictive background information were not used. In this way, the predictive rendering component improves upon previous implementations of font smoothing.