Abstract:
Connector receptacles that are arranged to avoid inadvertent connections. One example may provide contacts for a first connector receptacle that may be located behind a movable gate. The first connector receptacle may be combined with a second connector receptacle that is user accessible to save space and simplify device assembly. Combining the first connector receptacle and a second connector receptacle may also remove the movable gate from a surface of an electronic device, thereby further preventing inadvertent connections.
Abstract:
This application relates to magnetically actuated electrical connectors. The electrical connectors includes movable magnetic elements that move in response to an externally applied magnetic field. In some embodiments, the electrical connectors includes recessed contacts that move from a recessed position to an engaged position in response to an externally applied magnetic field associated with an electronic device to which the connector is designed to be coupled. In some embodiments, the external magnetic field has a particular polarity pattern configured to draw contacts associated with a matching polarity pattern out of the recessed position.
Abstract:
Connector receptacles and connector inserts that may be reliable, may readily manufactured, and may provide high signal quality for high speed signals with minimized signal noise, distortion losses, radiation, and interference. An example may provide a reliable connector receptacle by including a plurality of contacts, where each contact includes a first bend angling a contacting portion away from a tongue and a second bend angling a contacting portion towards the tongue, where the second bend is between the first bend and a front of the connector receptacle. Another example may provide a connector receptacle that may be readily manufactured by providing a tongue having tapered lead-ins for receiving contacting portions of contacts during assembly. Another example may provide a connector receptacle that provides isolation among signals by arranging through-hole portions of signal contacts in lines that are separated from each other by intervening through-hole portions of ground contacts.
Abstract:
Connector inserts and receptacles that provide signal paths having desired impedance characteristics. One example may provide a connector system having a connector insert and a connector receptacle. Contacts in the connector insert may form signal paths with corresponding contacts in the connector receptacle. Additional traces in the connector insert and receptacle may be part of these signal paths. The signal paths may have a target or a desired impedance along their lengths such that the power paths electrically appear as transmission lines. Constraints on physical dimensions of the connector insert and connector receptacle contacts may result in variations in impedance along the signal paths. Accordingly, embodiments of the present invention may provide structures to reduce these variations, to compensate for these variations, or a combination thereof.
Abstract:
Connector inserts having a high signal integrity and low insertion loss by shielding signal contacts. One example may provide one or more ground contacts between a front opening and signal pins of a connector insert. These ground contacts may have sufficient lever arm to provide a good contact to a corresponding contact in a connector receptacle. To avoid excessive length in the connector insert, embodiments of the present invention may stack a portion of the ground contact above the signal contacts in the connector insert. To reduce excessive capacitance that would otherwise reduce signal impedance, one or more openings may be formed in the ground contacts. To prevent signal contacts from shorting to a shield through this opening, the opening may be covered by tape. The ground contacts may be positioned to avoid encountering power contacts in the receptacle when the insert is inserted into the receptacle.
Abstract:
An accessory device including a foldable cover, a keyboard assembly coupled to the foldable cover and including a plurality of individually depressible keys, an attachment feature connected to the enclosure and configured to magnetically couple the accessory device with the electronic device. The attachment feature includes an exterior surface, a plurality of openings formed through the exterior surface, a plurality of movable contacts corresponding in number to the plurality of openings, each movable contact extending out of one of the plurality of openings, and an alignment feature comprising at least one magnet positioned adjacent to the plurality of openings.
Abstract:
Connecting structures to mechanically connect to a connector receptacle tongue and a printed circuit board and to electrically connect contacts on the connector receptacle tongue to traces on the printed circuit board. One example may provide an interposer having a housing and a plurality of contacts to connect a vertical tongue to a horizontal printed circuit board. The contacts may have a side or tongue connecting portion extending beyond a side of the housing and a bottom or board contacting portion extending beyond a bottom of the housing. The contacts may form a ninety-degree bend. A shield may at least substantially surround a vertical side of the housing.
Abstract:
Connector inserts having a high signal integrity and low insertion loss by shielding signal contacts. One example may provide one or more ground contacts between a front opening and signal pins of a connector insert. These ground contacts may have sufficient lever arm to provide a good contact to a corresponding contact in a connector receptacle. To avoid excessive length in the connector insert, embodiments of the present invention may stack a portion of the ground contact above the signal contacts in the connector insert. To reduce excessive capacitance that would otherwise reduce signal impedance, one or more openings may be formed in the ground contacts. To prevent signal contacts from shorting to a shield through this opening, the opening may be covered by tape. The ground contacts may be positioned to avoid encountering power contacts in the receptacle when the insert is inserted into the receptacle.
Abstract:
Combined connector receptacles that provide isolation between individual connector receptacles and have structures arranged to reduce or eliminate damage to through-hole contact portions during insertion of the combined connector into a board.
Abstract:
Connector inserts having contacts with a high-impedance for good signal integrity and low insertion loss, a pleasant physical appearance, and that may be reliably manufactured. One example may provide connector inserts having signal contacts with a high impedance in order to improve signal integrity to allow high data rates. Another may provide connector inserts having a pleasant appearance by providing features to prevent light gaps from occurring between a plastic tip at a front of the connector insert and a connector insert shield. Another may provide reliable manufacturing by crimping a cap used to secure a cable to a connector insert with a multi-section die, where contacting surfaces of the die include various points or peaks along their surface. These points may effectively wrinkle or jog the perimeter of the cap, thereby reducing the dimensions of a cross-section of the cable.