Abstract:
A display system includes a head-mounted display unit and a wake control system. The head-mounted display unit provides content to a user and is operable in a low-power state and a high-power state that consumes more power to provide the content to the user than the low-power state. The wake control system determines when to operate in the high-power state. The wake control system may assess a first wake criterion with low power, assess a second wake criterion with higher power than the first wake criterion upon satisfaction of the first wake criterion, and cause the head-mounted display unit to operate in the high-power state upon satisfaction of the second wake criterion.
Abstract:
An illuminator may be coupled to the key cap of a key. The key cap may include a portion that is operable to be illuminated and one or more illuminators may be coupled thereto. In particular embodiments, keys may include power delivery systems that are operable to wirelessly transmit power from a power source to illuminators. Such power delivery systems can include inductive transmitters and/or receivers, ultrasonic transmitters and/or receivers, laser diodes and photodiodes, electrodes that capacitively couple to wirelessly transfer power, and so on. In various embodiments, keys may include interconnects that connect an illuminator with a power source. The interconnect may be a flexible material that includes one or more traces and is configured with a shape that bends and twists to allow movement without stretching. The interconnect may also be part of a movement or support mechanism of a key.
Abstract:
Methods and apparatuses for operating a portable device based on an accelerometer are described. According to one embodiment of the invention, an accelerometer attached to a portable device detects a movement of the portable device. In response, a machine executable code is executed within the portable device to perform one or more predetermined user configurable operations. Other methods and apparatuses are also described.
Abstract:
An electronic device has an electronic device housing containing electrical components such as integrated circuits and other components. The electronic device housing may be provided with signal paths. Electrical components may be mounted to the electronic device housing and may be electrically coupled to the signal paths. The housing may be provided with channels in which signal lines are routed. The housing may be formed from a material such as metal. A layer of dielectric in the channel may be interposed between the metal of the housing and the signal lines in the channel. Capacitive coupling and inductive coupling may be used to electrically couple the electrical components to a signal line in the channel. Solder may be used to solder contacts on the electrical components to a signal line in the channel. Meandering channels and channels that traverse right-angled surfaces may be used.
Abstract:
Computer-implemented methods, computer-readable media, and computer systems for managing power consumption in mobile devices are described. A mobile computer system executes a first computer application configured to receive data from a server system over a network, and a second computer application configured to periodically search for a connection to the network at a first time interval. In response to executing the second computer application, the mobile computer system determines that a strength of the connection is below a threshold strength. In response to determining that the strength of the connection is below the threshold strength, the mobile computer system executes the first computer application to delay requesting data from the server system until the connection to the network is detected.
Abstract:
The disclosed embodiments provide a system that processes incoming network packets to an electronic device. The system includes an analysis apparatus that maintains a list of accepted incoming packet attributes for the electronic device based on outgoing packets from the electronic device. The system also includes a management apparatus that uses the list to classify an incoming packet to the electronic device as a solicited incoming packet or an unsolicited incoming packet. If the incoming packet is classified as the solicited incoming packet, the management apparatus enables subsequent processing of the incoming packet on the electronic device. If the incoming packet is classified as the unsolicited incoming packet, the management apparatus adjusts a triggering of radio dormancy in the electronic device based on the incoming packet.
Abstract:
A head-mountable display device includes a housing defining a front opening and a rear opening, a display screen disposed in the front opening, a display assembly disposed in the rear opening, a first securement strap coupled to the housing, the first securement strap including a first electronic component, a second securement strap coupled to the housing, the second securement strap including a second electronic component, and a securement band extending between and coupled to the first securement strap and the second securement strap.
Abstract:
A head-mountable display device includes a housing defining a front opening and a rear opening, a display screen disposed in the front opening, a display assembly disposed in the rear opening, a first securement strap coupled to the housing, the first securement strap including a first electronic component, a second securement strap coupled to the housing, the second securement strap including a second electronic component, and a securement band extending between and coupled to the first securement strap and the second securement strap.
Abstract:
Various implementations disclosed herein include devices, systems, and methods that adjust a focus of a camera based on a distance associated with a determined user attention. For example, an example process may include obtaining sensor data from one or more sensors in a physical environment. The process may include determining at least one gaze direction of at least one eye based on the sensor data. The process may further include determining a distance associated with user attention based on a convergence determined based on an intersection of gaze directions of the at least one gaze direction, or a distance of an object in a 3D representation of the physical environment based on the at least one gaze direction. The process may further include adjusting a focus of a camera of the one or more sensors based on the distance associated with the user attention.
Abstract:
A finger-mounted device may include finger-mounted units. The finger-mounted units may each have a body that serves as a support structure for components such as force sensors, accelerometers, and other sensors and for haptic output devices. The body may have sidewall portions coupled by a portion that rests adjacent to a user's fingernail. The body may be formed from deformable material such as metal or may be formed from adjustable structures such as sliding body portions that are coupled to each other using magnetic attraction, springs, or other structures. The body of each finger-mounted unit may have a U-shaped cross-sectional profile that leaves the finger pad of each finger exposed when the body is coupled to a fingertip of a user's finger. Control circuitry may gather finger press input, lateral finger movement input, and finger tap input using the sensors and may provide haptic output using the haptic output device.