Abstract:
A method of forming a copper via and the resultant structure. A thin layer of an insulating barrier material, such as aluminum oxide or tantalum nitride, is conformally coated onto the sides and bottom of the via hole, for example, by atomic layer deposition (ALD) to a thickness of less than 5 nm, preferably less than 2 nm and having an electrical resistivity of more than 500 microohm-cm. A copper seed layer is then deposited under conditions such that copper is deposited on the via sidewalls but not deposited over most of the bottom of via hole. Instead energetic copper ions sputter the barrier material from the via bottom. Copper is electroplated into the via hole lined only on its sidewalls with the barrier. The invention preferably extends also to dual-damascene structures in which the copper seed sputter process sputters the barrier layer from the via bottom but not the trench floor.
Abstract:
In conjunction with sputtering a metal, especially copper, into high aspect-ratio holes in a wafer, an oblique ion milling method in which argon ions or other particles having energies in the range of 200 to 1500 eV are directed to the wafer at between 10 and 35null to the wafer surface to sputter etch material sputter deposited preferentially on the upper corners of the holes. The milling may be performed in the sputter deposition chamber either simultaneously with the deposition or after it or performed afterwards in a separate milling reactor. A plurality of ion sources arranged around the chamber improve angular uniformity or arranged axially improve radial uniformity or vary the angle of incidence. An annular ion source about the chamber axis allows a plasma current loop. Anode layer ion sources and sources composed of copper are advantageous.
Abstract:
A sputter deposition method is performed in a sputtering chamber having a sputtering target facing a substrate support. A substrate is placed on the support in the chamber and, in a first sputtering stage, a first layer of sputtered material is deposited on the substrate by maintaining a first pressure of a sputtering gas in the chamber, and maintaining the substrate support at a first bias power level. In a second sputtering stage, a second layer of sputtered material is deposited on the substrate by maintaining a second pressure of the sputtering gas that is lower than the first pressure, and maintaining the substrate support at a second bias power level that is higher than the first bias power level.
Abstract:
The present invention provides a process sequence and related hardware for filling a hole with copper. The sequence comprises first forming a reliable barrier layer in the hole to prevent diffusion of the copper into the dielectric layer through which the hole is formed. One sequence comprises forming a generally conformal barrier layer over a patterned dielectric, etching the bottom of the hole, depositing a second barrier, and then filling the hole with copper. An alternative sequence comprises depositing a first barrier layer over a blanket dielectric layer, forming a hole through both the barrier layer and the dielectric layer, depositing a generally conformal second barrier layer in the hole, removing the barrier layer from the bottom of the hole, and selectively filling the hole with copper.
Abstract:
A method of forming a composite barrier layer structure for use in integrated circuits is disclosed. The composite barrier layer structure formed using both physical vapor deposition (PVD) and chemical vapor deposition (CVD) techniques. The composite barrier layer structure comprises a CVD deposited layer formed on a PVD deposited layer. During the PVD process, the underlying surface of the substrate is treated, reducing the resistivity of the barrier layer structure formed thereon.