Abstract:
Systems and methods for monitoring organisms within an aquatic environment are described. According to one aspect, an injectable acoustic transmission device includes a body configured to be injected inside of an organism, a transducer within the body and configured to convert a plurality of electrical signals into a plurality of data transmissions which are transmitted externally of the body and the organism, a plurality of circuit components within the body and configured to use electrical energy from a power source to generate the electrical signals which are provided to the transducer, and wherein the transducer defines an internal volume and at least one of the circuit components is provided within the internal volume of the transducer.
Abstract:
A method that includes contacting an amphipathic surface protective agent with a moisture sensitive Li-ion conductor material surface resulting in a protected Li-ion conductor material, and assembling an electrochemical cell that includes the protected Li-ion conductor material.
Abstract:
Methods for attaching a radio frequency (RF) transmitter to an animal are provided. The methods can include providing an RF transmitter and providing an injection device having a needle of gauge of 9 or smaller; providing the RF transmitter into the injection device; and providing the RF transmitter through the 9 gauge or smaller needle and into the animal.
Abstract:
Injectable acoustic tags and a process of making are described for tracking host animals in up to three dimensions. The injectable acoustic tags reduce adverse biological effects and have a reduced cost of manufacture compared with conventional surgically implanted tags. The injectable tags are powered by a single power source with a lifetime of greater than 30 days. The injectable tags have an enhanced acoustic signal transmission range that enhances detection probability for tracking of host animals.
Abstract:
Acoustic tags and a process for fabrication are disclosed for identifying and tracking various hosts including inanimate and animate objects in up to three dimensions. The acoustic tags may be powered by a single power source. Tags can have an operation lifetime of up to 90 days or longer at a transmission rate of 3 seconds. The acoustic tags have an enhanced signal range that enhances detection probability when tracking the hosts.
Abstract:
An energy storage device comprising:an anode; anda solute-containing electrolyte composition wherein the solute concentration in the electrolyte composition is sufficiently high to form a regenerative solid electrolyte interface layer on a surface of the anode only during charging of the energy storage device, wherein the regenerative layer comprises at least one solute or solvated solute from the electrolyte composition.
Abstract:
Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.
Abstract:
Methods for synthesizing single crystalline Ni-rich cathode materials are disclosed. The Ni-rich cathode material may have a formula LiNiXMnyMzCo1-x-y-zO2, where M represents one or more dopant metals, x≥0.6, 0.01≤y
Abstract:
Aquatic tracking makes use of acoustics, rather than other signals that do not travel as well in water. Tracking devices are used to monitor species of fish and other aquatic animals to monitor how their populations and movements are in nature, and how or whether those populations and movements are affected by, for example, hydroelectric dams and other manmade structures and phenomena. Often, the trackers inserted in aquatic animals adversely affect the animals and can lead to mortality or changed behaviors. New solutions that decrease the size and weight of such tracking devices are disclosed herein, enabling better tracking of aquatic animals that is less likely to cause adverse effects to those populations.
Abstract:
Methods for attaching a radio frequency (RF) transmitter to an animal are provided. The methods can include providing an RF transmitter and providing an injection device having a needle of gauge of 9 or smaller; providing the RF transmitter into the injection device; and providing the RF transmitter through the 9 gauge or smaller needle and into the animal.