Abstract:
A metal shell includes: a metal body having a through hole; a plastic member disposed on the metal body at a position of the through hole; and a NFC antenna disposed on a surface of the plastic member and configured to receive a signal via the through hole. An area of a part of the NFC antenna overlapping the through hole is larger than one third of an area of the NFC antenna. A cell phone including the metal shell is also provided.
Abstract:
A sealing assembly for a battery, a method of preparing the sealing assembly and a lithium ion battery are provided. The sealing assembly for a battery comprises: a ceramic ring (3) having a receiving hole (31), a metal ring (4) fitted over the ceramic ring (3) for sealing an open end of the battery, and a column (2) formed in the receiving hole (31) which comprises a metal-metal composite (21), wherein the metal-metal composite (21) comprises: a metal porous body, and a metal material filled in pores of the metal porous body.
Abstract:
The present disclosure provides a magnesium alloy and a preparation method and an application thereof. Based on the total weight of the magnesium alloy, the magnesium alloy includes 2-3.5 wt % of Ce, 0.01-0.2 wt % of R, 0.8-1.5 wt % of Mn, 0-0.01 wt % of Fe, 0-0.01 wt % of Cu, 0-0.01 wt % of Ni, 0-0.01 wt % of Co, 0-0.01 wt % of Sn, 0-0.01 wt % of Ca, and 94.74-97.19 wt % of Mg, wherein R is at least one selected from Al and Zn.
Abstract:
An amorphous alloy and a method for preparing the amorphous alloy are provided. The amorphous alloy is represented by a formula of (Zr,Hf)aMbNcBed. M contains at least one element selected from transition group elements. N contains at least one selected from Al and Ti. And 40≤a≤70, 10≤b≤40, 5≤c≤20, 5≤d≤25, and a+b+c+d=100. The ratio of an atomic percentage of Hf to an atomic percentage of Zr is in a range of about 0.01 to about 5.
Abstract:
A coating composition, a composite prepared by using the coating composition, and a method for preparing the composite are provided. The coating composition includes a solvent, an adhesive, and a catalyst precursor including at least one chosen from SnO2, ZnSnO3 and ZnTiO3.
Abstract:
An amorphous and a manufacturing method thereof are provided. The amorphous alloy may have a formula of ZraCubAlcMdNe, M is at least one selected from the group consisting of Ni, Fe, Co, Mn, Cr, Ti, Hf, Ta, Nb and rare earth elements; N is at least one selected from a group consisting of Ca, Mg, and C; 40≦a≦70, 15≦b≦35, 5≦c≦15, 5≦d≦15, 0≦e≦2, and a+b+c+d+e=100.
Abstract:
A resin composition comprises, based on 100% by weight of the resin composition: 45-70 wt % of a main resin, 20-45 wt % of a chopped glass fiber, 1-3 wt % of a toughening resin, 0.2-0.5 wt % of an unmodified glycidyl methacrylate, and 0-10 wt % of an auxiliaries. The main resin is selected from at least one of PBT resin and PPS resin. The chopped glass fiber has a dielectric constant of 4.0 to 4.4 at 1 MHz.
Abstract:
A base plate for a heat sink as well as a heat sink and an IGBT module having the same are provided. The base plate includes: a base plate body, including a body part; and a first surface layer and a second surface layer disposed respectively on two opposing surfaces of the body part; and N pins disposed on the first surface layer and spaced apart from one another, each pin having a first end fixed on the first surface layer and a second end configured as a free end, in which the first surface layer and the N pins are configured to contact a coolant, an area of a first portion of the first surface layer contacting the coolant is denoted as S1, and an area of a second portion of the first surface layer contacting each pin is denoted as S2, in which 180≤S1/S2≤800, and 300≤N
Abstract:
A method for metalizing a polymer substrate and a polymer article prepared thereof. First, a polymer substrate having a base polymer and at least one metal compound dispersed in the base polymer is provided. Then, a surface of the polymer substrate is irradiated with an energy beam such that a water contact angle of the surface of the polymer substrate is at least 120°. The surface of the polymer substrate is then subjected to chemical plating.
Abstract:
A sealing assembly, a method of preparing the sealing assembly and a battery are provided. The sealing assembly comprises a metal ring having a mounting hole therein; a ceramic ring having a connecting hole therein and disposed in the mounting hole; and a core column disposed in the connecting hole, wherein at least one of an inner circumferential wall surface of the metal ring, an outer circumferential wall surface of the ceramic ring, an inner circumferential wall surface of the ceramic ring and an outer circumferential wall surface of the core column is configured as an inclined surface, and an inclination angle of the inclined surface relative to a vertical plane is about 1 degree to about 45 degrees.