Abstract:
The invention provides a method of manufacturing an implantable medical device, the method comprising: (a) disposing a polymer fluid comprising a solvent and a matrix polymer into a forming apparatus for forming a polymeric part; (b) cooling the formed polymeric part upon removal from the apparatus, the cooled polymeric part comprises the polymer and a substantial portion of the solvent from the polymer fluid; and (c) fabricating an implantable medical device from the cooled polymeric part.
Abstract:
Medical assemblies with a releasable connection and methods of constructing such medical assemblies are disclosed. The medical assemblies generally comprise a stent, a catheter assembly having catheter body a balloon, and a releasable connection between the stent and the catheter assembly that releases the stent from the catheter assembly in response to enlargement of the balloon or when the balloon has been enlarged to an expanded configuration.
Abstract:
Disclosed herein is a method of fabricating a stent assembly comprising radially expanding a polymeric tube to an optimal degree of radial expansion; fabricating a stent from the expanded polymeric tube; and crimping the stent onto a catheter assembly, wherein the temperature of the stent during crimping is an optimal crimping temperature, wherein the optimal degree of radial expansion and the optimal crimping temperature correspond to an optimal fracture toughness exhibited by the crimped stent upon its deployment as a function of degree of radial expansion and crimping temperature.
Abstract:
A method and system for treating a bodily lumen with an implantable medical device, such as a stent, are disclosed. The device may be disposed within a bodily lumen and radially expanded by circumferentially deforming a tube-like section of the device. The deforming section may expand the lumen and the deformed section may support the lumen.
Abstract:
A pneumatic motor vehicle window breaking device used in vehicles, comprising: a cylinder and a spike, wherein one end of the spike is fixedly connected to an end of a piston rod of the cylinder, and the other end of the spike is tapered; the cylinder is mounted on a retaining frame. The pneumatic motor vehicle window breaking device directly uses the cylinder and takes high-pressure air as power; only a front end of the spike of the pneumatic motor vehicle window breaking device is required to be mounted at an appropriate position in alignment with a vehicle window before use, and an air valve controls high-pressure air source to drive the spike to complete window breaking, and the device employs a simple structure.
Abstract:
Described here are devices and methods for dilating tissues. In other variations, the dilatation device comprises a slotted or expandable tube that may expand to dilate tissue. In still other variations, the dilatation device comprises two or more hinged or movable plate members that separate to dilate tissue. In yet other variations, the dilation device may comprise one or more flexible members. One or more portions of the dilatation device may be detachable from the device in the body, and dilatation device may release one or more implants into the body. In some of these variations, the dilatation device may additionally be used to expand one or more implants or other devices within the body. In some variations the dilatation device may release one or more substances that may hold dilated tissue in a dilated configuration.
Abstract:
Medical assemblies with a releasable connection and methods of constructing such medical assemblies are disclosed. The medical assemblies generally comprise a stent, a catheter assembly having catheter body a balloon, and a releasable connection between the stent and the catheter assembly that releases the stent from the catheter assembly in response to enlargement of the balloon or when the balloon has been enlarged to an expanded configuration.
Abstract:
Devices and methods for treating a diseased tracheobronchial region in a mammal. The device can be a stent which can include a sustained-release material such as a polymer matrix with a treatment agent. The stent can be bioabsorbable and a treatment agent can be incorporated therewith. A treatment method can be delivery of a stent to a tracheobronchial region by a delivery device such as a catheter assembly.