Abstract:
An image processing apparatus includes an obtaining unit to obtain a plurality of images, a setting unit to set a first priority mode for a first page if the number of images including an object corresponding to the first priority mode among a plurality of images assigned to a first page is greater than the number of images including an object corresponding to the second priority mode among the plurality of images and set a second priority mode for a second page if the number of images including the object corresponding to the first priority mode among a plurality of images assigned to the second page is less than the number of images including the object corresponding to the second priority mode among the plurality of images.
Abstract:
A technique for laying out images included in a plurality of image groups into which a plurality of images is divided in such a way that an image including an object of a type desired by a user is included in each of the image groups. A user instruction related to the object type is received, and a plurality of images is divided into image groups so that an image including an object corresponding to the object type is included in each of the plurality of image groups.
Abstract:
An image processing method is provided for acquiring additional information from image information obtained by shooting a printed product on which the additional information is multiplexed by at least one of a plurality of different multiplexing methods, the method comprising: attempting decoding of the additional information from the image information by a plurality of different decoding methods corresponding to the plurality of different multiplexing methods; and outputting, by a unit, the additional information successfully decoded.
Abstract:
An image processing method includes performing an object identification process on a plurality of image data, generating layout data on the basis of at least some of the plurality of image data subjected to the identification process and template data, controlling displaying of a layout image on a display on the basis of the layout data, acquiring setting information relating to a priority of a particular object, and extracting a replacement candidate image in response to a request for replacing an image in the displayed layout image. In extracting a replacement candidate image, the replacement candidate image is extracted on the basis of the setting information relating to a priority.
Abstract:
A plurality of quantization conditions for embedding additional information is held. An image is segmented into a plurality of embedding regions, and a condition used in quantization is selected from the plurality of quantization conditions based on information of the image that corresponds to an embedding region to be processed and a position of the embedding region to be processed.
Abstract:
This invention provides a sample print which allows the user to easily set color adjustment parameters. To this end, upon outputting images which undergo color processing using a plurality of different parameter sets, a sample print mode of parallelly outputting a reference image and images which have different parameter sets of the image processing from the reference image, and are arranged around the reference image, and a sample print mode of parallelly outputting the reference image which is arranged at a corner of an image group including images in a specific hue direction, and images which have different parameter sets of the color processing from the reference image and are arranged between the corner and other corners, are prepared.
Abstract:
Nozzles in a print head are arrayed in a density of 600 dpi. Moreover, a dither matrix has a size of 16 pixels×16 pixels in 600 dpi. The dither matrix is repeatedly used. In the meantime, each of rectangles represents an HS processing unit. WHS=3 pixels. As a consequence, the relationship of a least common multiple below is established in a nozzle array direction: 3×WD=16×WHS. In this case, the cycle of interference unevenness can be prolonged to the least common multiple between WD and WHS, that is, 48 pixels (3WD). In this manner, the size of the dither matrix is not an integral multiple of the HS processing unit width, so that the cycle of interference unevenness can be prolonged more than the size of the dither matrix. Thus, the interference unevenness can be hardly recognized.
Abstract:
Provided is a dither pattern generation method so that a dot arrangement having excellent dispersibility can be obtained in low-gradation areas for single colors and for mixed colors. The dither pattern generation method generates dot patterns for low-gradation areas having threshold values 1 to S so that high dispersibility is obtained in a cyan dot pattern and a magenta dot pattern, and so that in a combined dot pattern made by combining these dot patterns there are no overlapping pixels. The dither pattern generation method then sets threshold values for a cyan dither pattern and a magenta dither pattern based on these generated dot patterns.
Abstract:
Provided are an image processing apparatus and an image processing method capable of reducing color unevenness due to variations in ejection characteristics among a plurality of nozzles when printing an image using a plurality of inks. To that end, a first image which is made up a color with noticeable color unevenness and similar colors is printed onto a print medium. The user then specifies a color and a nozzle position where color unevenness has occurred. On the basis of these results, parameters are set for a correction table referenced by an MCS processor. In so doing, it becomes possible to address the factor causing the color unevenness, and mitigate the effects of color unevenness in a focused way without incurring increases in processor load, memory requirements, or processing time as compared to the case of calibrating all lattice points.
Abstract:
An image processing apparatus for generating dot data to form an image by forming dots on a recording medium includes a receiving unit, a first, second, and third generating unit, and a correcting unit. The receiving unit receives first and second image data included in image data. The first generating unit generates, per the first image data, first ink color data representing a multi-valued signal value corresponding to an ink color. The second generating unit generates, per the second image data, second ink color data representing a multi-valued signal value corresponding to an ink color. The correcting unit corrects the signal value represented by the generated first and second ink color data. The third generating unit generates, per the first and second ink color data of which the signal values have been corrected, the dot data representing existence of formation of dots to form an image.