Abstract:
A method for controlling formation of glass bumps in a glass article with laser-irradiation without the use of a growth-limiting structure. Standard deviation of height between the glass bumps on the article is less than 1 micron by controlling the laser radiation dose provided on the glass article.
Abstract:
Methods of forming a glass article are disclosed. In one embodiment, a method of forming a glass article includes translating a pulsed laser beam on a glass substrate sheet to form a laser damage region between a first surface and a second surface of the glass substrate sheet. The method further includes applying an etchant solution to the glass substrate sheet to remove a portion of the glass substrate sheet about the laser damage region. The method may further include strengthening the glass substrate sheet by an ion-exchange strengthening process, and coating the glass substrate sheet with an acid-resistant coating. Also disclosed are methods where the laser damage region has an initial geometry that changes to a desired geometry following the reforming of the glass substrate sheet such that the initial geometry of the laser damage region compensates for the bending of the glass substrate sheet.
Abstract:
Vacuum-insulated glass windows include two or more glass panes, and glass-bump spacers formed in a surface of one of the panes. The glass-bump spacers consist of the glass material from the body portion of the glass pane. At least one of the glass panes comprises chemically-strengthened glass. Methods of forming VIG windows include forming the glass-bump spacers by irradiating a glass pane with a focused beam from a laser. Heating effects in the glass cause the glass to locally expand, thereby forming a glass-bump spacer. In embodiments where the glass-bump spacers are formed in a chemically-strengthened glass pane, the glass-bump spacers may be formed before or after the chemical strengthening. A second glass pane is brought into contact with the glass-bump spacers, and the edges sealed. The resulting sealed interior region is evacuated to a pressure of less than one atmosphere.
Abstract:
Methods of forming a glass article are disclosed. In one embodiment, a method of forming a glass article includes translating a pulsed laser beam on a glass substrate sheet to form a laser damage region between a first surface and a second surface of the glass substrate sheet. The method further includes applying an etchant solution to the glass substrate sheet to remove a portion of the glass substrate sheet about the laser damage region. The method may further include strengthening the glass substrate sheet by an ion-exchange strengthening process, and coating the glass substrate sheet with an acid-resistant coating. Also disclosed are methods where the laser damage region has an initial geometry that changes to a desired geometry following the reforming of the glass substrate sheet such that the initial geometry of the laser damage region compensates for the bending of the glass substrate sheet.
Abstract:
A glass container including a body having a delamination factor less than or equal to 10 and at least one marking is described. The body has an inner surface, an outer surface, and a wall thickness extending between the outer surface and the inner surface. The marking is located within the wall thickness. In particular, the marking is a portion of the body having a refractive index that differs from a refractive index of an unmarked portion of the body. Methods of forming the marking within the body are also described.
Abstract:
Methods for laser welding one or more optical fibers to a substrate and assemblies are disclosed. In one embodiment, a method of bonding an optical fiber to a substrate having at least one film layer on a surface of the substrate includes directing a laser beam into the optical fiber disposed on the at least one film layer. The optical fiber has a curved surface that focuses the laser beam to a focused diameter. The method further includes melting, using the focused diameter laser beam, a material of the substrate to create a laser bond area between the optical fiber and the surface of the substrate. The laser bond area includes laser-melted material of the substrate that bonds the optical fiber to the substrate. The at least one film layer has an absorption of at least 15% at a wavelength of the focused diameter laser beam.
Abstract:
A method of forming a strengthened glass article is provided. The method includes providing a strengthened glass article. The strengthened glass article is in the form of a container including a sidewall having an exterior surface and an interior surface that encloses an interior volume. The sidewall has an exterior strengthened surface layer that includes the exterior surface, an interior strengthened surface layer that includes the interior surface and a central layer between the exterior strengthened surface layer and the interior strengthened surface layer that is under a tensile stress. A laser-induced intended line of separation is formed in the central layer at a predetermined depth between the exterior strengthened surface layer and the interior strengthened surface layer by irradiating the sidewall with a laser without separating the glass article.
Abstract:
Assemblies, optical connectors, and methods for bonding optical fibers to a substrate using a laser beam are disclosed. In one embodiment, a method of bonding an optical fiber to a substrate includes directing a laser beam into the optical fiber disposed on a surface of the substrate, wherein the optical fiber has a curved surface and the curved surface of the optical fiber focuses the laser beam to a diameter that is smaller than a diameter of the laser beam as it enters the optical fiber. The method further includes melting, using the laser beam, a material of the substrate at a bond area between the optical fiber and the surface of the substrate such that the optical fiber is bonded to the surface of the substrate.
Abstract:
Assemblies, optical connectors, and methods for forming fiber arrays using laser bonded optical fibers are disclosed. In one embodiment, a method of forming a fiber array includes placing an optical fiber on a surface of a substrate, directing a laser beam into the optical fiber disposed on the surface of the substrate, melting, using the laser beam, a material of the substrate to create a first laser bond zone between the optical fiber and the surface of the substrate, applying an adhesive to the optical fiber and the substrate to create an adhesive bond zone between the optical fiber and the surface of the substrate, and cutting the optical fiber and the substrate to create a first section of the fiber array and a second section of the fiber array. The first section of the fiber array includes a first portion of the optical fiber, a first portion of the substrate, a first portion of the adhesive bond zone, and the first laser bond zone, and the second section of the fiber array includes a second portion of the optical fiber, a second portion of the substrate, and a second portion of the adhesive bond zone.
Abstract:
A method for forming features in transparent dielectric materials is described. The method includes laser micromachining of a transparent dielectric material. The transparent dielectric material is in contact with a liquid containing a fluorinated compound. Features formed by the method have low surface roughness and highly uniform linear dimensions.