Abstract:
A spray nozzle is used in a process of quenching a hot glass sheet during a laser scoring process or other high energy glass heating process. The nozzle is located in proximity to the glass sheet, creating gas in the liquid used to quench the glass while in the nozzle. The gas is removed from the quenching liquid. Then, the spray nozzle is used to spray the quenching liquid onto the sheet at a location trailing laser scoring of the sheet. The spray nozzle has a purge opening and tubing leading to a discharge location, and can have a sloped passageway that pre-stages gas bubbles near the purge opening. The spray nozzle can include a cooling coil passing around the nozzle passageway to cool the quenching liquid passing through the nozzle, and increase the solubility of bubbles in the quenching liquid.
Abstract:
A glass-coated gasket comprises a gasket main body defining an inner hole and having a first contact surface and a second contact surface opposite the first contact surface, and a glass layer formed over at least a portion of one of the first contact surface and the second contact surface. The glass layer comprises a low melting temperature glass. A vacuum insulated glass window comprises a substrate/glass-coated gasket/substrate structure that can be sealed using a thermo-compressive sealing step.
Abstract:
A method of printing a 3D object includes feeding one or more preformed materials from a feed outlet into a build zone in which a hot spot is located and using the hot spot to selectively heat the one or more preformed materials to a viscous state. Object layers are formed by depositing portions of the preformed materials on a build surface, or on another object layer on the build surface, while effecting relative motion between the build surface and the feed outlet.
Abstract:
A method for forming ion-exchanged regions in a glass article by contacting an ion source with at least one surface of the glass article, forming a first ion-exchanged region in the glass article by heating a first portion of the glass article with a laser, and forming a second ion-exchanged region in the glass article. Characteristics of the first ion-exchanged region may be different from characteristics of the second ion-exchanged region. A depth of the ion-exchanged region may be greater than 1 μm. A glass article including a first ion-exchanged region, and a second ion-exchanged region having different characteristics from the first ion-exchanged region. The thickness of the glass article is less than or equal to about 0.5 mm.
Abstract:
A apparatus for making a three-dimensional object (glass, glass ceramic or ceramic) that includes: a gripping fixture 102a having a grip surface or a pedestal 102 having a build surface 130, the grip or build surface configured to hold an end of a contiguous, preformed material 106, such as a fiber or a ribbon; a feed system 100 having a feed outlet 118 positioned above the grip or build surface, the feed system configured to feed the contiguous, preformed material into a build zone between the feed outlet and the grip or build surface; and a laser delivery system 134 arranged to direct at least one laser beam through the furnace 132 and into the build zone to form a hot spot 126 in the build zone; and a positioning system 120 arranged to effect relative motion between the grip or build surface and the feed outlet. In some implementations, the apparatus for making a 3D object can also include a furnace 132 enclosing the build zone and the feed outlet.
Abstract:
A system and method for making an edge section of a thin, high purity fused silica glass sheet. The method includes a step of directing a laser to melt through the glass sheet with localized heating of a narrow portion of the glass sheet to form an edge section of the glass sheet, and continuing the edge section to form a closed loop defining a perimeter of the glass sheet. The method further includes rapidly cooling the glass sheet through the glass transition temperature as the melted glass of the edge section contracts and/or solidifies to form an unrefined-bullnose shape extending between first and second major surfaces of the glass sheet.
Abstract:
Methods of forming scribe vents in a strengthened glass substrate having a compressive surface layer and an inner tension layer are provided. In one embodiment, a first and second defect is formed to partially expose the inner tension layer. A first scribe vent may be generated in a first scribing direction by translating a laser beam and a cooling jet on a surface of the strengthened glass substrate at a first scribing speed. A second scribe vent intersecting the first scribe vent may be generated in a second scribing direction by translating the laser beam and the cooling jet on the surface of the strengthened glass substrate at a second scribing speed that is greater than the first scribing speed. The defects may be perpendicular to the scribing directions. In another embodiment, the first scribe vent may be fused at an intersection location prior to generating the second scribe vent.
Abstract:
An additive manufacturing process includes forming an object material stack using sheet materials without use of binder material between the sheet materials and forming features of the cross-sectional layers of a 3D object in the corresponding sheet materials. Another process involves forming features of the cross-sectional layers of a 3D object in soot layers of a laminated soot sheet. A manufactured article includes three or more glass layers laminated together without any binder material between the glass layers. At least one of the glass layers is composed of silica or doped silica, and at least one feature is formed in at least one of the glass layers.
Abstract:
A method of forming a glass article is provided. The method includes the steps of positioning a first interface surface of a first glass block proximate a second interface surface of a second glass block to define an interface seam, welding the first and second glass blocks together around a majority of the interface seam to define an internal cavity, coupling a vacuum fitting to at least one of the first and second glass blocks, drawing a vacuum in the cavity between the first and second glass blocks, and heating the first and second glass blocks to fuse the first and second glass blocks together.
Abstract:
A method of making an LED device and an LED device using a high-silica, fully-sintered glass substrate is provided. The high-silica substrate is at least 99% silica and is thin, such as less than 200 μm in thickness. A phosphor containing layer is deposited on to the substrate and is laser sintered on the substrate such that a portion of the sintered phosphor layer embeds in the material of the substrate.