Abstract:
Provided herein is a three-dimensional scaffold composition comprising randomly oriented fibers, wherein the fibers comprise a polyethylene glycol-polylactic acid block copolymer (PEG-PLA) and a poly(lactic-co-glycolic acid) (PLGA). Also provided are methods for using the three-dimensional scaffolds described herein.
Abstract:
Provided herein is a three-dimensional scaffold composition comprising randomly oriented fibers, wherein the fibers comprise a polyethylene glycol-polylactic acid block copolymer (PEG-PLA) and a poly(lactic-co-glycolic acid) (PLGA). Also provided are methods for using the three-dimensional scaffolds described herein.
Abstract:
Provided herein is a hydrogel composition comprising a graphene, a chitosan, and a polyethylene (glycol) diacrylate (PEGDA) (PCG hydrogel). In some embodiments, the hydrogel further comprises a N-isopropylacrylamide (NIPAM) (TPCG hydrogel). Also provided is a method for differentiating a mesenchymal stem cell comprising contacting the cell with the PCG hydrogel. Further provided herein is a method for delivering a pharmaceutical composition to a cell comprising administering to the cell a TPCG hydrogel and the pharmaceutical composition.
Abstract:
This invention relates to a method and apparatus for amplifying an input current into an output current. An input current is first injected in or pulled out of a transimpedance stage and converted, in a linear way, into an interstage voltage. The interstage voltage is then converted into the output current. The conversion of the interstage voltage into an output current is performed by maintaining a transistor in the triode mode to obtain a linear conversion as well as adding a current which comes from a current source.
Abstract:
A method and circuit are provided to perform current-to-voltage conversions. The circuit is operational in one linear mode based on channel-length-modulation effects in the saturation region and two non-linear modes based on a current operation overrunning the saturation region and a logarithmic function of drain current versus gate-to-source voltage, respectively. An adaptive process is provided to set-up the quiescent point of the circuit. The conversion gain is variable with respect to the conversion mode, the current range, and the length of the converting transistor.
Abstract:
The present invention concerns molecularly imprinted polymers (MIPs) having an affinity for natriuretic peptides, such as atrial natriuretic peptide (ANP). In some embodiments, the MIP is a nanoparticle (a molecularly imprinted polymeric nanoparticle (MIPNP)). Other aspects of the invention include methods of preparing an MIP having affinity for a natriuretic peptide, methods for binding a natriuretic peptide in vitro or in vivo using an MIP of the invention, methods for interfering with the binding of a natriuretic peptide with its receptor in vivo, methods for reducing inflammation, cell growth, cell differentiation, or a cell proliferation disorder, methods for detecting natriuretic peptides, and devices and kits for sequestering and/or detecting natriuretic peptides.
Abstract:
Disclosed herein are theranostic nanoparticles configured for simultaneous delivery of a diagnostic moiety, drug moiety, and a gene therapy moiety. In one embodiment, the theranostic nanoparticles contain a super paramagnetic iron oxide chemotherapeutic loaded on a chitosan functionalized 2D graphene sheet with a gene therapy moiety attached to the surface of the chitosan functionalized 2D graphene sheet. Also disclosed are methods for making and administering theranositic nanoparticles configured for simultaneous delivery of a diagnostic moiety, drug moiety, and a gene therapy moiety.
Abstract:
Provided herein is a hydrogel composition comprising a graphene, a chitosan, and a polyethylene (glycol) diacrylate (PEGDA) (PCG hydrogel). In some embodiments, the hydrogel further comprises a N-isopropylacrylamide (NIPAM) (TPCG hydrogel). Also provided is a method for differentiating a mesenchymal stem cell comprising contacting the cell with the PCG hydrogel. Further provided herein is a method for delivering a pharmaceutical composition to a cell comprising administering to the cell a TPCG hydrogel and the pharmaceutical composition.
Abstract:
One embodiment of the present application discloses an POI displaying method for displaying information of at least one POI (point of interest) stored in a database on an electronic apparatus. The method comprises: (a) obtaining at least one POI according to a desired POI type; (b) obtaining at least one corresponding path according to the position of each obtained POI; (c) generating a POI gathering information of each corresponding path according to the at least one obtained POI; and (d) displaying the at least one corresponding path and the corresponding POI gathering information.
Abstract:
Provided herein are compositions comprising a micelle having a hydrophobic superparmagnetic iron oxide nanoparticle (SPION) core, a first coating comprising a cationic polymer, and a second coating comprising a polynucleotide. Also provided are methods of using the compositions for transfection and/or transformation of a cell with the polynucleotide. Further provided are methods of detecting transfection of a cell with the polynucleotide.