Abstract:
The present technology concerns improvements to smart phones and related sensor-equipped systems. Some embodiments involve spoken clues, e.g., by which a user can assist a smart phone in identifying what portion of imagery captured by a smart phone camera should be processed, or identifying what type of image processing should be conducted. Some arrangements include the degradation of captured content information in accordance with privacy rules, which may be location-dependent, or based on the unusualness of the captured content, or responsive to later consultation of the stored content information by the user. A great variety of other features and arrangements are also detailed.
Abstract:
The present disclosure relates generally digital watermarking and data hiding. One claim recites: receiving data representing imagery; and then, using one or more processors: transforming the data into a multi-channel color space; determining an impact of adding a color channel watermark signal image to a color direction of the received data; determining a color space direction for watermark detection; determining weighting factors based on a determined impact; weighting the color channel watermark signal with signal embedding weighting factors to yield a modified color channel watermark signal; embedding the modified color channel watermark signal in the data representing imagery with consideration of the color direction. Of course, other claims and combination are provided as well.
Abstract:
The present technology concerns improvements to smart phones and related sensor-equipped systems. Some embodiments involve spoken clues, e.g., by which a user can assist a smart phone in identifying what portion of imagery captured by a smart phone camera should be processed, or identifying what type of image processing should be conducted. Some arrangements include the degradation of captured content information in accordance with privacy rules, which may be location-dependent, or based on the unusualness of the captured content, or responsive to later consultation of the stored content information by the user. A great variety of other features and arrangements are also detailed.
Abstract:
Reference imagery of dermatological conditions is compiled in a crowd-sourced database (contributed by clinicians and/or the lay public), together with associated diagnosis information. A user later submits a query image to the system (e.g., captured with a smartphone). Image-based derivatives for the query image are determined (e.g., color histograms, FFT-based metrics, etc.), and are compared against similar derivatives computed from the reference imagery. This comparison identifies diseases that are not consistent with the query image, and such information is reported to the user. Depending on the size of the database, and the specificity of the data, 90% or more of candidate conditions may be effectively ruled-out, possibly sparing the user from expensive and painful biopsy procedures, and granting some peace of mind (e.g., knowledge that an emerging pattern of small lesions on a forearm is probably not caused by shingles, bedbugs, malaria or AIDS). A great number of other features and arrangements are also detailed.
Abstract:
Reference imagery of dermatological conditions is compiled in a crowd-sourced database (contributed by clinicians and/or the lay public), together with associated diagnosis information. A user later submits a query image to the system (e.g., captured with a smartphone). Image-based derivatives for the query image are determined (e.g., color histograms, FFT-based metrics, etc.), and are compared against similar derivatives computed from the reference imagery. This comparison identifies diseases that are not consistent with the query image, and such information is reported to the user. Depending on the size of the database, and the specificity of the data, 90% or more of candidate conditions may be effectively ruled-out, possibly sparing the user from expensive and painful biopsy procedures, and granting some peace of mind (e.g., knowledge that an emerging pattern of small lesions on a forearm is probably not caused by shingles, bedbugs, malaria or AIDS). A great number of other features and arrangements are also detailed.
Abstract:
In one embodiment, a first set of digital data (e.g., an image) is tested for the presence of a certain feature (e.g., a certain face), yielding one of two outcomes (e.g., not-present, or present). If the testing yields the first outcome, no additional testing is performed. If, however, the testing yields the second outcome, further testing is performed to further check this outcome. Such further testing is performed on a second set of digital data that is based on, but different from, the first set of data. Only if the original testing and the further testing both yield the same second outcome is it treated as a valid result. A variety of other features and arrangements are also detailed.
Abstract:
Digital data is optically broadcast through an environment by controllably switching the brightness or chrominance of LED solid state lamps, or of other illumination sources (e.g., television screens and backlit computer displays). This optical data channel is useful to convey cryptographic key data by which devices within the environment can authenticate themselves to a secure network. In some embodiments, the optical modulation is sensed by the camera of a smartphone. The row data output by the smartphone's camera sensor is processed to extract the modulated data signal. In some monochrome embodiments, data communication speeds far in excess of the camera's frame rate (e.g., 30/second), or even the camera's row rate (e.g., 14,400/second) are achieved. Still greater rates can be achieved by conveying different data in different chrominance channels. A great number of other features and arrangements are also detailed.
Abstract:
In one particular arrangement, a smartphone camera is moved by a user to capture dermatologic imagery from a variety of viewpoints. When the user thereafter holds the phone in a particular pose (e.g., with the display inclined upwardly, and with a display edge oriented substantially horizontally), the device switches to a display mode—presenting information derived from the earlier-captured dermatologic imagery. The device thus switches automatically between data collection and data presentation modes, based on pose and motion. A great variety of other features and arrangements are also detailed.
Abstract:
In some arrangements, product packaging is digitally watermarked over most of its extent to facilitate high-throughput item identification at retail checkouts. Imagery captured by conventional or plenoptic cameras can be processed (e.g., by GPUs) to derive several different perspective-transformed views—further minimizing the need to manually reposition items for identification. Crinkles and other deformations in product packaging can be optically sensed, allowing such surfaces to be virtually flattened to aid identification. Piles of items can be 3D-modelled and virtually segmented into geometric primitives to aid identification, and to discover locations of obscured items. Other data (e.g., including data from sensors in aisles, shelves and carts, and gaze tracking for clues about visual saliency) can be used in assessing identification hypotheses about an item. A great variety of other features and arrangements are also detailed.
Abstract:
Differential modulation schemes encode a data channel within host signal or noisy environment in a manner that is robust, flexible to achieve perceptual quality constraints, and provides improved data capacity. Differential arrangements enable a decoder to suppress host signal or other background signal interference when detecting, synchronizing and extracting an encoded data channel. They also enable the incorporation of implicit or explicit synchronization components, which are either formed from the data signal or are complementary to it.