Abstract:
There is disclosed an apparatus which can maintain a surface temperature of a polishing pad at a desired target temperature. The apparatus for regulating a surface temperature of a polishing pad, includes: a pad contact member which is contactable with a surface of the polishing pad and which has a heating flow passage and a cooling flow passage formed therein; a heating-liquid supply pipe coupled to the heating flow passage; a cooling-liquid supply pipe coupled to the cooling flow passage; a first flow control valve attached to the heating-liquid supply pipe; a second flow control valve attached to the cooling-liquid supply pipe; a pad-temperature measuring device configured to measure a surface temperature of the polishing pad; and a valve controller configured to operate the first flow control valve and the second flow control valve based on the surface temperature of the polishing pad.
Abstract:
The invention simplifies airbag calibration.A pressure calibration jig calibrates pressure to be applied to a plurality of airbags disposed inside a top ring for holding and pressing a wafer against a polishing pad. The pressure calibration jig includes a plurality of first passages capable of communicating with the plurality of airbags, respectively; a second passage which combines and connects the plurality of first passages to a pressure calibration sensor; and a flow control portion configured to allow a fluid to flow through the first passage of the plurality of first passages, which first passage corresponds to an airbag selected for pressure calibration, in a direction from the selected airbag toward the second passage, and also configured to prevent the fluid from flowing through the first passages other than the first passage corresponding to the selected airbag in a direction from the second passage toward the airbags.
Abstract:
A polishing apparatus polishes a surface of a substrate by pressing the substrate against a polishing pad on a polishing table. The polishing apparatus is configured to control a temperature of the polishing surface of the polishing pad by blowing a gas on the polishing pad during polishing. The polishing apparatus includes a pad temperature control mechanism having at least one gas ejection nozzle for ejecting a gas toward the polishing pad and configured to blow the gas onto the polishing pad to control a temperature of the polishing pad, and an atomizer having at least one nozzle for ejecting a liquid or a mixed fluid of a gas and a liquid and configured to blow the liquid or the mixed fluid onto the polishing pad to remove foreign matters on the polishing pad. The pad temperature control mechanism and the atomizer are formed into an integral unit.
Abstract:
A polishing method and a polishing apparatus which can increase a polishing rate and can control a polishing profile of a substrate being polished by adjusting a surface temperature of a polishing pad are disclosed. The polishing method for polishing a substrate by pressing the substrate against a polishing pad on a polishing table includes a pad temperature adjustment step of adjusting a surface temperature of the polishing pad, and a polishing step of polishing the substrate by pressing the substrate against the polishing pad having the adjusted surface temperature. In the pad temperature adjustment step, the surface temperature of a part of an area of the polishing pad, the area being to be brought in contact with the substrate, is adjusted during the polishing step so that the rate of temperature change of a temperature profile in a radial direction of the surface of the polishing pad becomes constant in the radial direction of the polishing pad.
Abstract:
A polishing apparatus polishes a surface of a substrate by pressing the substrate against a polishing pad on a polishing table. The polishing apparatus is configured to control a temperature of the polishing surface of the polishing pad by blowing a gas on the polishing pad during polishing. The polishing apparatus includes a pad temperature control mechanism having at least one gas ejection nozzle for ejecting a gas toward the polishing pad and configured to blow the gas onto the polishing pad to control a temperature of the polishing pad, and an atomizer having at least one nozzle for ejecting a liquid or a mixed fluid of a gas and a liquid and configured to blow the liquid or the mixed fluid onto the polishing pad to remove foreign matters on the polishing pad. The pad temperature control mechanism and the atomizer are formed into an integral unit.
Abstract:
A substrate processing apparatus having a detecting unit that can detect an abnormality of a substrate such as a crack of the substrate or chipping of the substrate is disclosed. The substrate processing apparatus includes a polishing unit configured to polish a substrate, a cleaning unit configured to clean the polished substrate, a substrate abnormality detection unit configured to detect an abnormality of the substrate, and a substrate transporting mechanism configured to transport the substrate in the order of the polishing unit, the substrate abnormality detection unit, and the cleaning unit. The substrate abnormality detection unit includes an imaging device configured to image the substrate, and an output monitoring unit configured to determine a status of the substrate by comparing a signal obtained from the imaging device with a predetermined threshold.
Abstract:
An apparatus for polishing a substrate includes a rotatable polishing table supporting a polishing pad, a substrate holder configured to hold the substrate and press the substrate against a polishing surface of the polishing pad on the rotating polishing table so as to polish the substrate, and a pad-temperature detector configured to measure a temperature of the polishing surface of the polishing pad. The apparatus also includes a pad-temperature regulator configured to contact the polishing surface to regulate the temperature of the polishing surface, and a temperature controller configured to control the temperature of the polishing surface by controlling the pad-temperature regulator based on information on the temperature of the polishing surface detected by the pad-temperature detector.
Abstract:
A pad-temperature regulating apparatus is disclosed, which includes a heat exchanger capable of being cleaned in a limited space. A pad-temperature regulating apparatus includes a heat exchanger configured to contact a polishing pad to exchange heat with the polishing pad, a moving mechanism configured to move the heat exchanger between a temperature regulating position where the heat exchanger can exchange heat with the polishing pad, and a retreat position located on a side of the polishing pad, and a cleaning mechanism configured to clean the heat exchanger moved to the retreat position. The heat exchanger has an approximate triangular shape in a horizontal cross-section, and a longest side of the heat exchanger faces the polishing pad when the heat exchanger is moved to the retreat position.
Abstract:
A heat exchanger capable of preventing sticking of slurry is disclosed. The heat exchanger includes: a flow passage structure having a heating flow passage and a cooling flow passage formed therein; and a water-repellent material covering a side surface of the flow passage structure. A side surface of the heat exchanger is constituted by the water-repellent material.
Abstract:
The present invention relates to a substrate processing apparatus for processing a substrate, such as a wafer, while supplying a cleaning liquid (e.g. pure water and a liquid chemical) to the substrate, and also relates to a pipe cleaning method for the substrate processing apparatus. The substrate processing apparatus includes: a first cleaning lane including first cleaning units (52), (54) each for cleaning a substrate while supplying pure water to the substrate; a second cleaning lane including second cleaning units (60), (62) each for cleaning a substrate while supplying pure water to the substrate; a first pure-water supply pipe (120) for supplying the pure water to the first cleaning lane; and a second pure-water supply pipe (180) for supplying the pure water to the second cleaning lane.