Abstract:
A plug connector assembly includes a cable and a mating member electrically connected to the cable, the mating member having an insulative housing and a contacting module retained in the insulative housing, the contacting module having a first contacting module unit and a second contacting module unit, the first contacting module unit having plural first contacts arranged along a lateral direction and a first insulative member retaining the first contacts, the second contacting module unit having plural second contacts arranged along the lateral direction and a second insulative member retaining the second contacts, wherein each of the first and second insulative members includes a same engagement structure, through which the first insulative member and the second insulative member are assembled into a whole by interference arrangement and then inserted into the insulative housing together.
Abstract:
A plug connector assembly includes: a cable; a printed circuit board including a mating end for inserting into a mating connector, a connecting end electrically connected with the cable, and an intermediate portion between the mating end and the connecting end, the mating end defining plural conductive pads extending along a longitudinal direction of the printed circuit board for electrically connecting with the mating connector and arranged in a horizontal direction perpendicular to the longitudinal direction; and an outer case enclosing the intermediate portion of the printed circuit board and a part of the cable; wherein the intermediate portion defines on each of two side edges thereof a recessing portion filled by the outer case.
Abstract:
A cable connector assembly comprises a cable including a number of wires, and an electrical connector including a spacer positioning the cable, the spacer defines a front face and a rear face, a number of through holes positioning the wires, and a respective midfellow formed between every two adjacent through holes, wherein a notch is defined on the midfellows in the rear face to make the through holes in fluid communication.
Abstract:
A power cable connector assembly includes: an electrical connector including an insulative housing, a number of contacts retained in the insulative housing, and an outer case enclosing the insulative housing; a cable electrically connecting with the electrical connector, the cable including a number of core wires connected with corresponding contacts and a number of control wires; and a sensor enclosed by the outer case, the sensor including a number of conductive wires connected with corresponding control wires and a mounting portion, the mounting portion having a through hole for fixing the sensor to the insulative housing.
Abstract:
A cable connector assembly (100) includes a mating member (10) adapted to be mated with a mating connector, a cable (20) electrically connected with the mating member, a strain relief member (30) enclosing the cable, and an outer shell (40) assembled at outer sides of the mating member and the strain relief member. The outer shell includes a first shell (41) and a second shell (42) mated with the first shell. The strain relief member includes a mating portion (31) enclosed by the outer shell and a ring portion (32) connected with the mating portion. Both of the first shell and the second shell are latched with the mating portion.
Abstract:
A cable connector assembly includes a connector and a cable electrically connected thereto. The connector includes a metal shell, a metal cage enclosing a rear end of the metal shell, and an outer housing enclosing the metal cage therein. The connector has a front end for inserting into a mating connector and a rear end. The diametrical dimension of the front end is smaller than the diametrical dimension of the rear end. The outer housing includes a front portion extending forwardly beyond the metal cage to prevent the cable connector mistakenly inserted into an unintended receptacle connector.
Abstract:
A connector assembly has an insulative housing including a top wall, a bottom wall, a side wall, and a receiving cavity enclosed by these walls. A slot and some passageways are formed on the top wall and communicating to the receiving cavity along a vertical direction. A printed circuit board is received within the receiving cavity. A plurality of contacts connected to the printed circuit board have moveable contacting portions extending through the corresponding passageways and upwardly beyond a top face of the top wall. A magnet includes a top section received within the slot and a bottom section bonded to the bottom wall through melting a part of the bottom wall.
Abstract:
A cable connector assembly includes a cable and an electrical connector electrically connected with the cable, the electrical connector including a mating member, a printed circuit board (PCB) electrically connected with the mating member, a light emitting element mounted on the PCB, a light pipe to pass the light emitted by the light emitting element therethrough, a metal shell enclosing the PCB, and an outer case covering the metal shell, the light pipe mounted to the PCB, wherein the light pipe defines a first step portion and a second step portion on the bottom side of the first step portion, the first step portion defines a first surface exposing to a light-transmissive region of the outer case, the second step portion defines a second surface, and the metal shell bears against the second surface to press the light pipe against the PCB.
Abstract:
A cable connector assembly includes an electrical connector and a cable electrically connected with the electrical connector. The electrical connector defines a plug portion, a printed circuit board electrically connected to the plug portion, a pair of LED lamps mounted on the printed circuit board, an optical element transmitting the light emitted by the LED lamps and an insulative housing covering the printed circuit board. The optical element defines a pair of transition portions transmitting the light emitted by the LED lamps and a photic zone, the photic zone of the optical element is exposed to the insulative shell and has a closed circumference so that the light emitted by the LED lamps passes through the photic zone to form a continuous aperture.
Abstract:
An electrical connector assembly (100) comprises an insulative housing (1) comprising a lower wall, a receiving space (110), a cavity (120) above the receiving space (110), a shielding shell (9) enclosing the insulative housing (1), a number of contacts (2, 3) received in the insulative housing (1) and a cable (5). The contacts (2, 3) comprise a number of first contacts (2) for transmitting USB 3.0 signal and a number of second contacts (3) capable of transmitting USB 2.0 signal, and an extra signal contact (3e) transmitting an extra signal. The second contacts are partly received in the receiving space (110). The first contacts are partly received in the cavity (120). The engaging section of the extra signal contact (3e) is located on an inner surface of the lower wall.