METHOD OF SYNTHESIZING DICLOFENAC SODIUM
    11.
    发明申请

    公开(公告)号:US20200055811A1

    公开(公告)日:2020-02-20

    申请号:US16288031

    申请日:2019-02-27

    Abstract: The invention relates to the chemical synthesis of pharmaceutical API, and specifically to a method of synthesizing diclofenac sodium, which is a kind of nonsteroidal anti-inflammatory drug for relieving pain. The method includes: nitrating phenylacetate to prepare o-nitrophenylacetate (2); hydrogenating o-nitrophenylacetate (2) to prepare o-aminophenylacetate (3); amidating an amino group of o-aminophenylacetate (3) to obtain 2-(2-benzoylaminophenyl) acetate (4); 2-(2-benzoylaminophenyl) acetate (4) reacting with thionyl chloride to prepare a chloroimine intermediate, and then condensing the intermediate of chloroimine with 2,6-dichlorophenol using an inorganic base to prepare (E)-methyl-2-(2-((2,6-dichlorophenoxy)(phenyl)methyleneamino) phenyl ester (5); subjecting (E)-methyl-2-(2-((2,6-dichlorophenoxy)(phenyl)methyleneamino) phenyl ester (5) to Chapman rearrangement to afford methyl 2-(2-(N-(2,6-dichlorophenyl)benzoylamino)phenyl) ester (6); and hydrolyzing methyl 2-(2-(N-(2,6-dichlorophenyl)benzoylamino)phenyl) ester (6) to provide the target compound as of diclofenac sodium API. The overall yield is up to 67% based on methyl phenylacetate.

    CONTINUOUS-FLOW PREPARATION METHOD OF DICLOFENAC SODIUM

    公开(公告)号:US20230192595A1

    公开(公告)日:2023-06-22

    申请号:US18172865

    申请日:2023-02-22

    CPC classification number: C07C227/18 C07C227/40

    Abstract: This application relates to pharmaceutical engineering, and more particularly to a continuous-flow preparation method of diclofenac sodium. The continuous-flow preparation method includes: subjecting aniline and chloroacetic acid to amidation to obtain 2-chloro-N-phenylacetamide (3); subjecting 2-chloro-N-phenylacetamide (3) and 2,6-dichlorophenol to continuous condensation to obtain N-(2,6-dichlorophenyl)-2-hydroxy-N-phenylacetamide (5); subjecting N-(2,6-dichlorophenyl)-2-hydroxy-N-phenylacetamide (5) and thionyl chloride to chlorination to obtain N-(2,6-dichlorophenyl)-2-chloro-N-phenylacetamide (6); subjecting N-(2,6-dichlorophenyl)-2-chloro-N-phenylacetamide (6) to Friedel-Crafts alkylation in the presence of aluminum chloride to obtain 1-(2,6-dichlorophenyl)-1,3-dihydro-2H-indo1-2-one (7); and subjecting 1-(2,6-dichlorophenyl)-1,3-dihydro-2H-indol-2-one (7) to hydrolysis to obtain the diclofenac sodium.

    METHOD FOR PREPARING (DIMETHYLAMINOMETHYLENE) MALONONITRILE USING A MICRO REACTION SYSTEM

    公开(公告)号:US20220089524A1

    公开(公告)日:2022-03-24

    申请号:US17103520

    申请日:2020-11-24

    Abstract: A method for preparing (dimethylaminomethylene) malononitrile by using a micro reaction system. Cyanoacetamide, N,N-dimethylformamide and a catalyst are mixed to obtain a mixture, and the mixture and phosphorus oxychloride are simultaneously pumped into the micro reaction system that includes a micromixer and a microchannel reactor connected in series for continuous dehydration condensation. After adjusted to a target pH, the crude product is subjected to continuous liquid-liquid extraction with an organic solvent in a centrifugal extraction unit comprising a plurality of annular centrifugal extractors connected in series. The organic phase is collected to obtain the target product (dimethyl aminomethylene) malononitrile.

    MULTI-LAYERED MICRO-CHANNEL MIXER AND METHOD FOR MIXING FLUIDS

    公开(公告)号:US20210394141A1

    公开(公告)日:2021-12-23

    申请号:US17467377

    申请日:2021-09-06

    Abstract: A multi-layered micro-channel mixer includes a base plate and a cover plate. Two inlet fluid reservoirs, two inlet channels, two groups of fluid distribution channel networks, two groups of process fluid channels, an impinging stream mixing chamber, a fluid mixing intensification channel and an outlet buffer reservoir are provided on the base plate. Two fluids are fed into the two inlet fluid reservoirs, respectively. The fluids then flow into the process fluid channels via the inlet channels and the multi-stage fluid distribution channel networks, respectively. Then the two fluid streams ejected from the opposing process fluid channels impinges upon each other in the impinging stream mixing chamber. The mixed fluid is subjected to vortex or secondary flow generated by the baffles or the internals in the impinging stream mixing chamber and fluid mixing intensification channel, and finally the mixed fluid is discharged through the outlet buffer reservoir.

    FULL CONTINUOUS-FLOW PREPARATION METHOD OF L-CARNITINE

    公开(公告)号:US20220267253A1

    公开(公告)日:2022-08-25

    申请号:US17741112

    申请日:2022-05-10

    Abstract: A full continuous-flow preparation method of L-carnitine, including: mixing chlorine gas and a diketene solution via a first micromixer followed by transportation to a first microchannel reactor for continuous chlorination and esterification reaction to obtain 4-chloroacetoacetate; feeding the 4-chloroacetoacetate and a reductase to a second micromixer and a second microchannel reactor in sequence for continuous catalytic reaction to obtain (R)-4-chloro-3-hydroxybutyrate; simultaneously transporting the (R)-4-chloro-3-hydroxybutyrate and a trimethylamine solution to a third micromixer and a third microchannel reactor for continuous substitution and hydrolysis reaction; and subjecting the reaction mixture to desalination and concentration to obtain the L-carnitine.

    ENZYME-CATALYZED METHOD FOR SYNTHESIZING (2S, 3R)-2-SUBSTITUTED AMINOMETHYL-3-HYDROXYBUTYRATE

    公开(公告)号:US20220090151A1

    公开(公告)日:2022-03-24

    申请号:US17545963

    申请日:2021-12-08

    Abstract: An enzyme-catalyzed method of synthesizing (2S, 3R)-2-substituted aminomethyl-3-hydroxybutyrate, including: preparing engineered bacteria containing a carbonyl reductase SsCR-encoding gene; preparing a resting cell suspension of the engineered bacteria; preparing a culture containing carbonyl reductase; and mixing the culture containing carbonyl reductase with substrate 2-substituted aminomethyl-3-one butyrate, glucose dehydrogenase, a cosolvent, glucose and a cofactor followed by asymmetric carbonyl reduction to obtain (2S, 3R)-2-substituted aminomethyl-3-hydroxybutyrate. The amino acid sequence of the carbonyl reductase is shown in SEQ ID NO.1.

    ENZYME-CATALYZED SYNTHESIS OF (1S,5R)-BICYCLOLACTONE

    公开(公告)号:US20210355516A1

    公开(公告)日:2021-11-18

    申请号:US17038081

    申请日:2020-09-30

    Abstract: An enzyme-catalyzed synthesis of (1S,5R)-bicyclolactone. A first genetically-engineered bacterium containing Baeyer-Villiger monooxygenase gene and a second genetically-engineered bacterium containing glucose dehydrogenase gene are constructed and then suspended with culture medium to prepare a first suspension and a second suspension, respectively. The first and second suspensions are centrifuged to respectively produce a first supernatant containing Baeyer-Villiger monooxygenase and a second supernatant containing glucose dehydrogenase, which are mixed. The mixed supernatant is then mixed with a raceme of a substituted bicyclo[3.2.0]-hept-2-en-6-one, a solvent, a hydrogen donor and a cofactor to perform an asymmetric Baeyer-Villiger oxidation to produce the (1S,5R)-bicyclolactone, where an amino acid sequence of the Baeyer-Villiger monooxygenase is shown in SEQ ID NO:1.

Patent Agency Ranking