Abstract:
A fluid ejector includes a nozzle layer, a body, an actuator and a membrane. The body includes a pumping chamber, a return channel, and a first passage fluidically connecting the pumping chamber to an entrance of the nozzle. A second passage fluidically connects the entrance of the nozzle to the return channel. The actuator is configured to cause fluid to flow out of the pumping chamber such that actuation of the actuator causes fluid to be ejected from the nozzle. The membrane is formed across and partially blocks at least one of the first passage, the second passage or the entrance of the nozzle. The membrane has at least one hole therethrough such that in operation of the fluid ejector fluid flows through the at least one hole in the membrane.
Abstract:
A system includes a print head including multiple nozzles formed in a bottom surface of the print head. The nozzles are configured to eject a liquid onto a substrate. The system includes a gas flow module configured to provide a flow of gas through a gap between the bottom surface of the print head and the substrate. The gas flow module can include one or more gas nozzles configured to inject gas into the gap. The gas flow module can be configured to apply a suction to the gap.
Abstract:
An apparatus includes a reservoir and a printhead. The printhead includes a support structure including a deformable portion defining at least a top surface of a pumping chamber, a flow path extending from the reservoir to the pumping chamber to transfer fluid from the reservoir to the pumping chamber, and an actuator disposed on the deformable portion of the support structure. A trench is defined in a top surface of the actuator. Application of a voltage to the actuator causes the actuator to deform along the trench, thereby causing deformation of the deformable portion of the support structure to eject a drop of fluid from the pumping chamber.
Abstract:
An apparatus includes a pumping chamber and a descender having a first end and a second end. The first end of the descender is centered relative to the pumping chamber and defines a first fluid flow pathway between the pumping chamber and a nozzle disposed at the second end of the descender. One or more second fluid flow pathways are defined at the second end of the descender.
Abstract:
A system includes a print head including multiple nozzles formed in a bottom surface of the print head. The nozzles are configured to eject a liquid onto a substrate. The system includes a gas flow module configured to provide a flow of gas through a gap between the bottom surface of the print head and the substrate. The gas flow module can include one or more gas nozzles configured to inject gas into the gap. The gas flow module can be configured to apply a suction to the gap.
Abstract:
A method, apparatus, and system are described herein for driving a droplet ejection device with multi-pulse waveforms. In one embodiment, a method for driving a droplet ejection device having an actuator includes applying a multi-pulse waveform with a drop-firing portion having at least one drive pulse and a non-drop-firing portion to an actuator of the droplet ejection device. The non-drop-firing portion includes a jet straightening edge having a droplet straightening function and at least one cancellation edge having an energy canceling function. The at least drive pulse causes the droplet ejection device to eject a droplet of a fluid.
Abstract:
A method for ejecting fluid from a fluid ejector includes actuating a piezoelectric actuator to cause deformation of a membrane defining a wall at a first end of an elongated channel of the fluid ejector, the deformation of the membrane causing ejection of a droplet of fluid from a nozzle disposed at a second end of the channel. The elongated channel fluidically connects a first channel to the nozzle, the first channel disposed at the first end of the elongated channel, and wherein an impedance of the first channel is at least ten times greater than an impedance of the elongated channel. Deformation of the membrane induces fluid flow along the elongated channel, and wherein at least 60% of the fluid flow induced by the deformation of the membrane is in a direction extending from the first end of the elongated channel to the second end of the elongated channel.
Abstract:
An ink jet printing system includes: a print head including multiple fluid ejectors, each fluid ejector including a corresponding nozzle defined in a bottom surface of the print head, each nozzle configured to eject a liquid onto a substrate. The nozzles can be arranged in an array including four or more parallel rows, the rows extending along a direction that is perpendicular to a process direction of the ink jet printing system. The process direction is the direction of relative motion between the print head and the substrate during operation of the print head. A spacing between adjacent nozzles in each row can be such that a nozzle density in each row is less than 75 nozzles per inch. A spacing between adjacent rows in the process direction can be less than the spacing between adjacent nozzles in each row.
Abstract:
A fluid ejector includes a nozzle layer, a body, an actuator and a membrane. The body includes a pumping chamber, a return channel, and a first passage fluidically connecting the pumping chamber to an entrance of the nozzle. A second passage fluidically connects the entrance of the nozzle to the return channel. The actuator is configured to cause fluid to flow out of the pumping chamber such that actuation of the actuator causes fluid to be ejected from the nozzle. The membrane is formed across and partially blocks at least one of the first passage, the second passage or the entrance of the nozzle. The membrane has at least one hole therethrough such that in operation of the fluid ejector fluid flows through the at least one hole in the membrane.
Abstract:
A fluid ejector includes a nozzle layer, a body, an actuator and a membrane. The body includes a pumping chamber, a return channel, and a first passage fluidically connecting the pumping chamber to an entrance of the nozzle. A second passage fluidically connects the entrance of the nozzle to the return channel. The actuator is configured to cause fluid to flow out of the pumping chamber such that actuation of the actuator causes fluid to be ejected from the nozzle. The membrane is formed across and partially blocks at least one of the first passage, the second passage or the entrance of the nozzle. The membrane has at least one hole therethrough such that in operation of the fluid ejector fluid flows through the at least one hole in the membrane.