Abstract:
A process of forming a calcium-magnesium-aluminosilicate (CMAS) penetration resistant coating, and a CMAS penetration resistant coating are disclosed. The process includes providing a thermal barrier coating having a dopant, and exposing the thermal barrier coating to calcium-magnesium-aluminosilicate and gas turbine operating conditions. The exposing forming a calcium-magnesium-aluminosilicate penetration resistant layer. The coating includes a thermal barrier coating composition comprising a dopant selected from the group consisting of rare earth elements, non-rare earth element solutes, and combinations thereof. Additional or alternatively, the coating includes a thermal barrier coating and an impermeable barrier layer or a washable sacrificial layer positioned on an outer surface of the thermal barrier coating.
Abstract:
The present disclosure is directed to a system for attaching an instrument lead to a gas turbine engine component. The system includes a gas turbine engine component that includes a surface. A first sleeve couples to the surface of the gas turbine engine component. The first sleeve defines a first sleeve passageway extending therethrough. An instrument lead extends through the first sleeve passageway. A first potting material couples the instrument lead to the first sleeve to prevent the instrument lead from moving longitudinally relative to the first sleeve.
Abstract:
A method for fabricating thermal barrier coatings. The thermal barrier coatings are produced with a fine grain size by reverse co-precipitation of fine powders. The powders are then sprayed by a solution plasma spray that partially melts the fine powders while producing a fine grain size with dense vertical cracking. The coatings comprise at least one of 45%-65% Yb2O3 the balance zirconia (zirconium oxide), Yb/Y/Hf/Ta the balance zirconia (zirconium oxide) and 2.3-7.8% La, 1.4-5.1% Y and the balance zirconia (zirconium oxide) and are characterized by a thermal conductivity that is about 25-50% lower than that of thermal barrier coatings comprising YSZ. The thermal barrier coatings also are characterized by at least one of excellent erosion resistance, fracture toughness and abrasion resistance.
Abstract:
Methods of making an environmental barrier coating (EBC) for a substrate are provided that include providing an EBC feedstock comprising a rare earth element composition, in which a portion of the composition produces a volatile species during an air plasma spray coating process, providing a first additive that comprises or produces the volatile species during the air plasma spray coating process, injecting the EBC feedstock into a plasma spray plume during the air plasma spray coating process; and injecting the first additive into at least one of the plasma spray plume and a plasma torch nozzle during the air plasma spray coating process, in which the EBC has a composition that is substantially similar to the composition of the EBC feedstock. Also provided are processes for air plasma spray coating an EBC onto a substrate.
Abstract:
Various aspects of the present disclosure relate to a nozzle insert which may be used with a thermal spray gun apparatus. A nozzle insert according to the disclosure may include a body having an outer surface, the outer surface of the body being configured to circumferentially contact and transfer heat to an inner face of a thermal spray gun nozzle of a thermal spray gun. The body of the nozzle insert may be removed from the thermal spray gun nozzle without disassembling the thermal spray gun, and includes an axial passage configured to communicate a plasma discharge from the nozzle insert. A thermal spray gun apparatus and a thermal spray gun system including the nozzle insert are also disclosed.
Abstract:
A composite wire for use with a wire arc spray system and related methods. The composite wire can include: a low melting point material at a core region thereof and a cladding including a metal surrounding the core region, the low metal point material having a melting point less than that of the metal, wherein the low melting point material includes a polymer in the form of a powder having particles having a size of from approximately 1 nanometer to approximately 100 nanometers.
Abstract:
A ceramic powder and method of forming the ceramic powder capable of being used in coatings to allow components to survive in high temperatures environments, such as the hostile thermal environment of a gas turbine engine. The ceramic powder includes powder particles each having an inner core formed of a first material and an outer region formed of a second material. The inner core has a lower thermal conductivity than the outer region, and the outer region is more erosion resistance relative to the inner core.
Abstract:
A process of fabricating a thermal barrier coating is disclosed. The process includes cold spraying a substrate with a feedstock to form a thermal barrier coating and concurrently oxidizing one or more of the substrate, the feedstock, and the thermal barrier coating. The cold spraying is in a region having an oxygen concentration of at least 10%. In another embodiment, the process includes heating a feedstock with a laser and cold spraying a substrate with the feedstock to form a thermal barrier coating. At least a portion of the feedstock is retained in the thermal barrier coating. In another embodiment, the process of fabricating a thermal barrier coating includes heating a substrate with a laser and cold spraying the substrate with a feedstock to form a thermal barrier coating.