Abstract:
An optical add-drop multiplexer including a first filter filtering a first band of wavelengths of a communication spectrum for a first communication segment and a second filter filtering a second band of wavelengths of the communication spectrum for a second communication segment. The second band of wavelengths overlaps the first band of wavelengths in an overlap band of wavelengths. The overlap band may have a variable size. The first band of wavelengths includes a first fraction of the overlap band of wavelengths for the first communication segment and the second band of wavelengths includes a remaining fraction the overlap band of wavelengths for the second communication segment.
Abstract:
A packet switch/router including a first stage switch fabric receiving an electrical signal, a mid-stage buffer receiving and storing the electrical signal from the first stage switch fabric, and a second stage switch fabric receiving the electrical signal from the mid-stage buffer. Each switch fabric includes N layers of N×N arrayed waveguide gratings (AWGs), and each AWG has ingress ports and egress ports. A wavelength tunable device, such as a tunable laser, communicates with a source ingress port of an AWG and converts the received electrical signal to an optical signal having a wavelength selected for routing a packet from the source ingress port to a target egress port of the arrayed waveguide grating. A photoreceiver, such as a burst-mode photoreceiver, receives the propagated optical signal from the target egress port and converts the optical signal to the electrical signal.
Abstract:
Aspects of the invention provide transmitters and receivers for managing multiple optical signals. High order modulation, such as phase and/or amplitude modulation, is used to achieve multiple bits per symbol by transporting multiple asynchronous data streams in an optical transport system. One or more supplemental multiplexing techniques such as time division multiplexing, polarization multiplexing and sub-carrier multiplexing may be used in conjunction with the high order modulation processing. This may be done in various combinations to realize a highly spectrally efficient multi-data stream transport mechanism. The system receives a number of asynchronous signals which are unframed and synchronized, and then reframed and tagged prior to the high order modulation. Differential encoding may also be performed. Upon reception of the multiplexed optical signal, the receiver circuitry may employ either direct detection without a local oscillator or coherent detection with a local oscillator.
Abstract:
Described are methods and system for network analysis. A network analyzer for a first network is configured to receive network assessment information from a network metric monitors situated in third-party networks, the network assessment information indicating values for characteristics of one or more network paths from the respective network metric monitor to a node in a second network. The network analyzer aggregates the received network assessment information and identifies, from the aggregated network assessment information, a route from the first network to the node in the second network. The identified route is then selected from among a plurality of potential routes from the first network to the node in the second network and used in setting a routing policy for data flows from the first network through the node in the second network.
Abstract:
A communication system includes a first and second trunk terminals, a plurality of communication trunks disposed along a floor of a body of water, and power feed equipment. Each communication trunk couples the first trunk terminal to the second trunk terminal and includes at least one signal amplifier configured to amplify a signal conveyed along the corresponding communication trunk. The power feed equipment is coupled to the plurality of communication trunks and is configured to deliver power along each communication trunk to power the at least one signal amplifier of the communication trunk. The power feed equipment is also configured to receive a shunt fault notification identifying an electrical shunt fault along a faulted communication trunk of the plurality of communication trunks. In response to the shunt fault notification, the power feed equipment is configured to cease delivery of power along at least one communication trunk.
Abstract:
The present disclosure describes system and methods for network planning. The systems and methods can incorporate network traffic demands, availability requirements, latency, physical infrastructure and networking device capability, and detailed cost structures to calculate a network design with minimum or reduced cost compared to conventional methods. In some implementations, the method include providing an initial, deterministic set of failures, and then successively performing a network optimization and a network availability simulation to determine which failures most impact the performance of the network model. The high impact failures can then be provided back into the system, which generates an improved network design while still maintaining minimum cost.
Abstract:
This disclosure provides systems, methods, and apparatus for improving spectral efficiency of a communication system. The communication system can include a transmitter, a receiver and a communication link for communicating data between the transmitter and the receiver. The transmitter can employ a multi-carrier technique to transmit data to the receiver. The transmitter can generate a plurality of carrier signals using a receiver-side comb generator, one of which is sent to the transmitter as a pilot carrier signal combined with modulated carrier signals over an optical link. At the receiver the receiver-side comb generator uses the pilot carrier signal to generate a plurality of receiver-side carrier signals, which are used for detecting the modulated carrier signals. As the phase noise in the modulated carrier signals and the phase noise in the receiver-side carrier signals have the same characteristics, the phase noise is cancelled at the receiver, resulting in improved detection.
Abstract:
Described are methods and system for network analysis. A network analyzer for a first network is configured to receive network assessment information from a network metric monitors situated in third-party networks, the network assessment information indicating values for characteristics of one or more network paths from the respective network metric monitor to a node in a second network. The network analyzer aggregates the received network assessment information and identifies, from the aggregated network assessment information, a route from the first network to the node in the second network. The identified route is then selected from among a plurality of potential routes from the first network to the node in the second network and used in setting a routing policy for data flows from the first network through the node in the second network.
Abstract:
An optical add-drop multiplexer including a first filter filtering a first band of wavelengths of a communication spectrum for a first communication segment and a second filter filtering a second band of wavelengths of the communication spectrum for a second communication segment. The second band of wavelengths overlaps the first band of wavelengths in an overlap band of wavelengths. The overlap band may have a variable size. The first band of wavelengths includes a first fraction of the overlap band of wavelengths for the first communication segment and the second band of wavelengths includes a remaining fraction the overlap band of wavelengths for the second communication segment.