Abstract:
A high speed high resolution heterodyne interferometric method and system are provided. The invention uses two spatially separated beams with slightly different frequencies and has two measurement signals with opposite Doppler shift. The switching circuit selects one of the two measurement signals for displacement measurement according to the direction and speed of the target movement. In this invention, the measurement is insensitive to the thermal variation; the periodic nonlinearity is essentially eliminated by using two spatially separated beams; the measurable target speed of the interferometer is no longer limited by the beat frequency of the laser source.
Abstract:
A differential proportional temperature measurement circuit and method based on bidirectional constant voltage drive is proposed. The circuit and method applied to the precision temperature measurement of spacecraft, the main components include a bidirectional constant voltage source proportional bridge circuit, a differential and single-ended amplifier circuit, an analog-to-digital conversion circuit, a digital filter circuit, a data processing circuit and an isolated filter power supply circuit. The method adopts the bidirectional constant voltage drive technology, and enlarges and measures the difference between the voltage values of the reference resistor and the resistance to be measured by improving the sensing bridge of the ordinary commutation proportional method, and suppresses the long-term drift of the excitation unit and the voltage measurement unit. The method can meet the requirements of temperature measurement resolution of μK magnitude and the power spectral density of μK/Hz1/2 (0.1 mHz-1 Hz) magnitude in aerospace temperature measurement systems.
Abstract:
A heterodyne interferometer and a measurement method based on multi-target opposite displacement measurement are provided, technical points including: An output path of the laser source is sequentially arranged with a first beam splitter and a second beam splitter arranged in parallel on left and right sides, and both of which are polarization beam splitters; a first reflector is arranged above the first beam splitter, a third reflector is arranged on a right side of the second beam splitter, a second plane reflector is arranged in front of the second beam splitter, and a first plane reflector is arranged behind the second beam splitter; the first plane reflector and the second plane reflector jointly constitute a second reflector group; a left side of the first beam splitter is provided with a first photodetector and a second photodetector. The present invention realizes the measurement of relative displacement between opposing objects.
Abstract:
A micro-probe laser frequency modulation interferometric ranging method and system, under the premise of not introducing an absolute laser rangefinder to introduce new uncertainties, continuously and slowly changes the modulated laser wavelength, resulting in a continuous periodic phase change in the interference signal obtained by the detector. The laser modulation absorption spectrum shifts from the initial locked absorption peak to another locked peak, and the wavelength changes of the two locked absorption peaks before and after are obtained by checking the table. Meanwhile, calculating the phase difference demodulated by the phase generated carrier (PGC) before and after, and the initial length of optical dead-path is calculated using wavelength scanning technology. Afterwards, utilizing the advantages of high relative distance measurement accuracy of micro-probe fiber optic laser interferometer, real-time measurement of the measured distance is achieved.
Abstract:
A high-precision dual-axis laser inclinometer based on wavefront homodyne interference and a measuring method are disclosed. The method includes: obtaining a laser signal through a laser light source module, transmitting the laser signal to an integrated sensing module, and generating a wavefront interference signal based on the integrated sensing module; and inputting the wavefront interference signal into a signal processing module for performing high-precision decoupling operation to obtain a horizontal inclination angle measurement result. The measurement resolution is high, the measurement result can be directly traced to the laser wavelength, high-precision dual-axis inclination angle measurement can be realized only by using single-beam measurement light, meanwhile, the laser inclinometer has the advantages of being simple in structure, simple in light path, easy to integrate, beneficial to engineering implementation, and high in cost performance, and the requirement of high-end equipment on the ultra-precision inclinometer is met.
Abstract:
A single-beam three-degree-of-freedom homodyne laser interferometer based on an array detector. A single-frequency laser beam is input to a Michelson interference structure, the measurement beam and the reference beam perform non-coaxial interference and form a single-beam homodyne interference signal by setting the angle of a reference plane mirror, the array detector is selected to effectively receive the single-beam homodyne interference signal, and finally, three-degree-of-freedom signal linear decoupling on the single-beam homodyne interference signal is achieved through a three-degree-of-freedom decoupling method based on Lissajous ellipse fitting. The laser interferometer does is free of angle decoupling nonlinearity, the period nonlinear error is remarkably reduced, compared with other existing three-degree-of-freedom laser interferometers, the laser interferometer has the advantages of being simple in structure, large in angle measurement range and easy to integrate, and the high-precision requirement of the three-degree-of-freedom laser interferometer for displacement and angle measurement is met.
Abstract:
The present disclosure provides an approximation-free and iteration-free method for spectral analysis of an intracavity electro-optic modulation type optical frequency comb, a device and a medium. The method includes: calculating a residual phase delay of a single propagation of laser in a resonant cavity, analyzing outgoing transmission characteristics of a light source of the intracavity electro-optic modulation type optical frequency comb, accumulating laser electric field intensities corresponding to all cyclic propagation times n to obtain an outgoing laser electric field intensity E, obtaining a new approximate-free outgoing laser electric field intensity E′ of the intracavity electro-optic modulation type optical frequency comb, obtaining an outgoing laser electric field intensity Ek′ of kth-order comb teeth, calculating an outgoing laser light intensity Ik of the kth-order comb teeth and accurately analyzing a spectrum of the intracavity electro-optic modulation type optical frequency comb, determining a working state according to a simulated spectral envelope curve, and guiding the subsequent optimization design and debugging. The method for the spectral analysis of the optical frequency comb is higher in accuracy without approximation and faster in speed without iteration, and can analyze the spectrum of the intracavity electro-optic modulation type optical frequency comb according to any known working mode.
Abstract:
The disclosure provides a high-frequency-reproducibility laser frequency stabilization method and device based on multi-point acquisition of laser tube temperature. The laser frequency stabilization device includes: a frequency stabilization control circuit. The frequency stabilization control circuit includes a polarizing beam splitter, an optical power conversion circuit, an A/D conversion circuit, a temperature measuring circuit, a microprocessor, a D/A converter and a heating film driver. The polarizing beam splitter is disposed outside any one of laser transmitting holes. The optical power conversion circuit is disposed on reflection and refraction optical paths of the polarizing beam splitter. The optical power conversion circuit, the A/D conversion circuit, the microprocessor, the D/A converter, the heating film driver and a plurality of groups of heating films are sequentially in one-way connection. Temperature sensors, the temperature measuring circuit and the microprocessor are sequentially in one-way connection.
Abstract:
A high speed high resolution heterodyne interferometric method and system are provided. The invention uses two spatially separated beams with slightly different frequencies and has two measurement signals with opposite Doppler shift. The switching circuit selects one of the two measurement signals for displacement measurement according to the direction and speed of the target movement. In this invention, the measurement is insensitive to the thermal variation; the periodic nonlinearity is essentially eliminated by using two spatially separated beams; the measurable target speed of the interferometer is no longer limited by the beat frequency of the laser source.
Abstract:
A method for measuring a dip angle of oppositely crossly placed paired quartered ring-quartered circle nested polar plates. An annular coplanar capacitance measuring head of a sensor unit consists of four quarter round metal plates and four quarter circular-ring-shaped metal plates, the eight metal plates are coplanar and concentric with one another, and a quarter round metal plate and a quarter circular-ring-shaped metal plate corresponding to the same sector angle form a capacitor. Two annular coplanar capacitance measuring heads are arranged on two round insulating substrates, the two round insulating substrates are used as two bottom surfaces of a cylindrical container, the cylindrical container is transversely arranged, and an insulating liquid equal to ½ volume of the cylindrical container is injected into the cylindrical container in a sealing manner. Potential leads extract potentials of the sixteen metal plates and are connected to an input end of a capacitance measuring unit, and the capacitance measuring unit is connected to a dip measuring unit. When the cylindrical container tilts, the relative positions of the two annular coplanar capacitance measuring heads and the insulating liquid are changed, and a dip angle value can be calculated by measuring the change of a capacitance value. Also disclosed is a device for measuring a dip angle of oppositely crossly placed paired quartered ring-quartered circle nested polar plates.