-
公开(公告)号:US20240302213A1
公开(公告)日:2024-09-12
申请号:US18652142
申请日:2024-05-01
Applicant: Spectricity
Inventor: Jonathan Borremans , Andy Lambrechts , Jerome Baron
IPC: G01J3/40 , G01J3/28 , G01J3/36 , G01N21/31 , G06F3/14 , H04N23/16 , H04N23/60 , H04N23/63 , H04N23/67
CPC classification number: G01J3/40 , G01J3/28 , G01J3/2823 , G01J3/36 , G01N21/31 , G06F3/14 , H04N23/16 , H04N23/63 , H04N23/635 , H04N23/64 , H04N23/67 , H04N23/675
Abstract: A user device includes a spectrometer module adapted to acquire spectral information and output spectral data representing the acquired spectral information, memory adapted to store predetermined calibration data, a processing unit configured to substantially correct the spectral data using the stored calibration data and an electronic circuit module, The electronic circuit module includes a light sensitive area for detecting incident light of a plurality of wavelengths within a set wavelength interval, detected light of a plurality of wavelengths forming spectral data and the light sensitive area including a plurality of light detectors. Each light detector is adapted to detect light of a selected wavelength. The calibration data is based on a predetermined characteristic of the electronic circuit module, which has been configured to correct a wavelength detected by each light detector and the wavelengths detected by each light detector has a known relationship to a wavelength detected by a reference light detector.
-
公开(公告)号:US20240268680A1
公开(公告)日:2024-08-15
申请号:US18646390
申请日:2024-04-25
Applicant: Omni Medsci, Inc.
Inventor: Mohammed N. ISLAM
IPC: A61B5/00 , A61B5/145 , A61B5/1455 , A61C1/00 , A61C19/04 , G01J3/02 , G01J3/10 , G01J3/12 , G01J3/14 , G01J3/18 , G01J3/28 , G01J3/42 , G01J3/453 , G01M3/38 , G01N21/35 , G01N21/3504 , G01N21/3563 , G01N21/359 , G01N21/39 , G01N21/85 , G01N21/88 , G01N21/95 , G01N33/02 , G01N33/15 , G01N33/44 , G01N33/49 , G16H40/67 , G16Z99/00 , H01S3/00 , H01S3/067 , H01S3/30
CPC classification number: A61B5/0088 , A61B5/0013 , A61B5/0022 , A61B5/0075 , A61B5/0086 , A61B5/14532 , A61B5/14546 , A61B5/1455 , A61B5/4547 , A61B5/6801 , A61B5/7203 , A61B5/7257 , A61B5/7405 , A61B5/742 , A61C19/04 , G01J3/02 , G01J3/0218 , G01J3/108 , G01J3/14 , G01J3/28 , G01J3/2823 , G01J3/42 , G01J3/453 , G01N21/35 , G01N21/3504 , G01N21/3563 , G01N21/359 , G01N21/39 , G01N21/88 , G01N33/02 , G01N33/025 , G01N33/15 , G01N33/442 , G01N33/49 , G16H40/67 , G16Z99/00 , A61B5/0024 , A61B2562/0233 , A61B2562/0238 , A61B2562/146 , A61B2576/02 , A61C1/0046 , G01J2003/104 , G01J2003/1208 , G01J3/1838 , G01J2003/2826 , G01M3/38 , G01N2021/3513 , G01N2021/3595 , G01N2021/399 , G01N21/85 , G01N21/9508 , G01N2201/061 , G01N2201/06113 , G01N2201/062 , G01N2201/08 , G01N2201/12 , G01N2201/129 , H01S3/0092 , H01S3/06758 , H01S3/302 , Y02A90/10
Abstract: A remote sensing system for time-of-flight measurements may comprise an array of laser diodes with Bragg reflectors operating in the near-infrared wavelength range synchronized to a detection system comprising lenses, spectral filters and a photodiode array coupled to a processor. The time-of-flight depth information may be combined with various camera imaging systems. The camera system may comprise a lens system, prism and a sensor. In another embodiment, the data from two cameras may be combined with the time-of-flight depth information. Yet another embodiment comprises an imaging system with another array of laser diodes followed by a beam splitter and a detection system. The remote sensing system may be coupled to a smart phone, tablet or wearable device, and the combined data may provide three-dimensional information about at least some part of an object. Also, artificial intelligence may be used in the processing to make decisions regarding the depth and images.
-
公开(公告)号:US20240230405A1
公开(公告)日:2024-07-11
申请号:US18618187
申请日:2024-03-27
Applicant: HAMAMATSU PHOTONICS K.K.
Inventor: Kei Tabata , Masaaki Muto
CPC classification number: G01J3/28 , G01J3/0291 , G01J3/26 , G02B5/284 , G01J2003/1252
Abstract: A spectroscopic unit includes a housing, a light incident portion provided in the housing, a Fabry-Perot interference filter arranged in the housing and having a first mirror and a second mirror, a distance between the first mirror and the second mirror being variable. The light incident portion includes an aperture portion in which an aperture is formed and a band pass filter arranged between the aperture and the Fabry-Perot interference filter. The aperture portion is configured so that a value obtained by dividing a length of the aperture in a facing direction of the first mirror and the second mirror by a width of the aperture in a direction perpendicular to the facing direction is equal to or more than 0.5 and the entirety of light passing through the aperture is incident on the band pass filter.
-
公开(公告)号:US20240230404A1
公开(公告)日:2024-07-11
申请号:US18432304
申请日:2024-02-05
Applicant: Altria Client Services LLC
Inventor: Seetharama C. DEEVI , Henry M. DANTE , Qiwei LIANG , Samuel Timothy HENRY
IPC: G01J3/28 , A24B3/16 , A24B15/18 , B07C5/342 , B07C5/36 , G01N21/31 , G01N21/84 , G06F16/51 , G06T7/00 , G06V20/10
CPC classification number: G01J3/28 , A24B3/16 , A24B15/18 , B07C5/342 , B07C5/366 , G01J3/2823 , G01N21/31 , G01N21/84 , G06F16/51 , G06T7/0008 , G06V20/194 , H05K999/99 , G01J2003/2826 , G01N2021/8461 , G01N2021/8466 , G06T2207/20024 , G06T2207/30108 , G06T2207/30188
Abstract: Provided is a method for blending of agricultural product utilizing hyperspectral imaging. At least one region along a sample of agricultural product is scanned using at least one light source of different wavelengths. Hyperspectral images are generated from the at least one region. A spectral fingerprint for the sample of agricultural product is formed from the hyperspectral images. A plurality of samples of agricultural product is blended based on the spectral fingerprints of the samples according to parameters determined by executing a blending algorithm.
-
公开(公告)号:US20240225454A9
公开(公告)日:2024-07-11
申请号:US18386877
申请日:2023-11-03
Applicant: Omni Medsci, Inc.
Inventor: Mohammed N. ISLAM
IPC: A61B5/00 , A61B5/145 , A61B5/1455 , A61C19/04 , G01J3/02 , G01J3/10 , G01J3/14 , G01J3/28 , G01J3/42 , G01J3/453 , G01N21/35 , G01N21/3504 , G01N21/3563 , G01N21/359 , G01N21/39 , G01N21/88 , G01N33/02 , G01N33/15 , G01N33/44 , G01N33/49 , G16H40/67 , G16Z99/00
CPC classification number: A61B5/0088 , A61B5/0013 , A61B5/0022 , A61B5/0075 , A61B5/0086 , A61B5/14532 , A61B5/14546 , A61B5/1455 , A61B5/4547 , A61B5/6801 , A61B5/7203 , A61B5/7257 , A61B5/7405 , A61B5/742 , A61C19/04 , G01J3/02 , G01J3/0218 , G01J3/108 , G01J3/14 , G01J3/28 , G01J3/2823 , G01J3/42 , G01J3/453 , G01N21/35 , G01N21/3504 , G01N21/3563 , G01N21/359 , G01N21/39 , G01N21/88 , G01N33/02 , G01N33/025 , G01N33/15 , G01N33/442 , G01N33/49 , G16H40/67 , G16Z99/00 , G01N2201/129 , H01S3/302
Abstract: A measurement system may comprise an actively illuminated camera system, in some embodiments coupled to a time-of-flight sensor or an array of laser diodes beam split into a plurality of spatially separated lights. The camera system may capture two or three dimensional images, and the light source may comprise semiconductor diodes, such as light emitting diodes. The system includes a processor coupled to non-transitory computer readable medium and configured to use artificial intelligence to make one or more decisions. The processing may also involve artificial intelligence or machine learning techniques to analyze anomalous occurrences, or generative artificial intelligence to interface with a user or improve the performance of camera-based systems. Algorithms may also be used to improve the performance of generative artificial intelligence processing. The camera output may be fused with data from other sensors, and the camera may also capture information about the pose or gestures of a user.
-
公开(公告)号:US12031868B2
公开(公告)日:2024-07-09
申请号:US17553144
申请日:2021-12-16
Applicant: Gerchberg Ophthalmic Dispensing, PLLC
Inventor: Okan Ersoy
CPC classification number: G01J9/02 , G01J3/0229 , G01J3/28 , G01J2003/283 , G01J2003/284 , G01J2009/0238 , G03H1/0866 , G03H1/0891 , G03H1/16
Abstract: A totagram is produced by an iterative spectral phase recovery process resulting in complete information recovery using special masks, without a reference beam. Using these special masking systems reduce computation time, number of masks, and number of iterations. The special masking system is (1) a unity mask together with one or more bipolar binary masks with elements equal to 1 and −1, or (2) a unity mask together with one or more phase masks, or (3) a unity mask together with one pair of masks or more than one pair of masks having binary amplitudes of 0's and 1's, in which the masks in the pair are complementary to each other with respect to amplitude, or (4) one or more pairs of complementary masks with binary amplitudes of 0's and 1's without a unity mask.
-
公开(公告)号:US20240192055A1
公开(公告)日:2024-06-13
申请号:US18581626
申请日:2024-02-20
Applicant: Applied Materials, Inc.
Inventor: Kin Pong LO , Lara HAWRYLCHAK , Malcolm J. BEVAN , Theresa Kramer GUARINI , Wei LIU , Bernard L. HWANG
CPC classification number: G01J3/28 , G01J3/0218 , G01J3/10 , G01J3/443 , G01J2003/2879
Abstract: One or more embodiments described herein generally relate to systems and methods for calibrating an optical emission spectrometer (OES) used for processing semiconductor substrates. In embodiments herein, a light fixture is mounted to a plate within a process chamber. A light source is positioned within the light fixture such that it provides an optical path that projects directly at a window through which the OES looks into the process chamber for its reading. When the light source is on, the OES measures the optical intensity of radiation from the light source. To calibrate the OES, the optical intensity of the light source is compared at two separate times when the light source is on. If the optical intensity of radiation at the first time is different than the optical intensity of radiation at the second time, the OES is modified.
-
公开(公告)号:US12007277B2
公开(公告)日:2024-06-11
申请号:US17412029
申请日:2021-08-25
Applicant: TECHNOLOGICAL RESOURCES PTY. LIMITED
Inventor: Richard J. Murphy , Arman Melkumyan , Anna Chlingaryan , Dai Bang Nguyen , Stuart Wishart , Alex Lowe , Steven Scheding
CPC classification number: G01J3/2823 , G01J3/0202 , G01J3/0208 , G01J3/0237 , G01J3/0264 , G01J3/0286 , G01J3/0291 , G01J3/28 , G06F18/214 , G06F18/24 , H04N23/11 , H04N23/51 , H04N23/71 , H04N23/73 , G01J2003/2826
Abstract: A compact hyperspectral imager adapted to operate in harsh environments and to conduct post acquisition signal processing to provide automated and improved hyperspectral processing results is disclosed. The processing includes luminance and brightness processing of captured hyperspectral images, hyperspectral image classification and inverse rendering to produce luminance invariance image processing.
-
公开(公告)号:US11992291B2
公开(公告)日:2024-05-28
申请号:US18211354
申请日:2023-06-19
Applicant: Omni Medsci, Inc.
Inventor: Mohammed N. Islam
IPC: A61B5/00 , A61B5/145 , A61B5/1455 , A61C19/04 , G01J3/02 , G01J3/10 , G01J3/14 , G01J3/28 , G01J3/42 , G01J3/453 , G01N21/35 , G01N21/3504 , G01N21/3563 , G01N21/359 , G01N21/39 , G01N21/88 , G01N33/02 , G01N33/15 , G01N33/44 , G01N33/49 , G16H40/67 , G16Z99/00 , A61C1/00 , G01J3/12 , G01J3/18 , G01M3/38 , G01N21/85 , G01N21/95 , H01S3/00 , H01S3/067 , H01S3/30
CPC classification number: A61B5/0088 , A61B5/0013 , A61B5/0022 , A61B5/0075 , A61B5/0086 , A61B5/14532 , A61B5/14546 , A61B5/1455 , A61B5/4547 , A61B5/6801 , A61B5/7203 , A61B5/7257 , A61B5/7405 , A61B5/742 , A61C19/04 , G01J3/02 , G01J3/0218 , G01J3/108 , G01J3/14 , G01J3/28 , G01J3/2823 , G01J3/42 , G01J3/453 , G01N21/35 , G01N21/3504 , G01N21/3563 , G01N21/359 , G01N21/39 , G01N21/88 , G01N33/02 , G01N33/025 , G01N33/15 , G01N33/442 , G01N33/49 , G16H40/67 , G16Z99/00 , A61B5/0024 , A61B2562/0233 , A61B2562/0238 , A61B2562/146 , A61B2576/02 , A61C1/0046 , G01J2003/104 , G01J2003/1208 , G01J3/1838 , G01J2003/2826 , G01M3/38 , G01N2021/3513 , G01N2021/3595 , G01N2021/399 , G01N21/85 , G01N21/9508 , G01N2201/061 , G01N2201/06113 , G01N2201/062 , G01N2201/08 , G01N2201/12 , G01N2201/129 , H01S3/0092 , H01S3/06758 , H01S3/302 , Y02A90/10
Abstract: A sensing system includes laser diodes with Bragg reflectors generating light having an initial light intensity and one or more near-infrared optical wavelengths. The laser diodes are modulated with a pulsed output with 0.5 to 2 nanosecond pulse duration. A beam splitter receives light from the laser diodes, splits the light into a received sample arm light directed to an object and a received reference arm light. A detection system includes a second lens and spectral filters in front of a photodiode array. The photodiode array is coupled to CMOS transistors and receives at least a portion of the received reference arm light and generates a reference detector signal. The detection system is synchronized with the laser diodes. A time-of-flight measurement is based on a comparison of the sample detector signal and the reference detector signal and measures a temporal distribution of photons in the received reflected sample arm light.
-
公开(公告)号:US11971301B2
公开(公告)日:2024-04-30
申请号:US17287157
申请日:2019-08-06
Applicant: HAMAMATSU PHOTONICS K.K.
Inventor: Kei Tabata , Masaaki Muto
CPC classification number: G01J3/28 , G01J3/0291 , G01J3/26 , G02B5/284 , G01J2003/1252
Abstract: A spectroscopic unit includes a housing, a light incident portion provided in the housing, a Fabry-Perot interference filter arranged in the housing and having a first mirror and a second mirror, a distance between the first mirror and the second mirror being variable. The light incident portion includes an aperture portion in which an aperture is formed and a band pass filter arranged between the aperture and the Fabry-Perot interference filter. The aperture portion is configured so that a value obtained by dividing a length of the aperture in a facing direction of the first mirror and the second mirror by a width of the aperture in a direction perpendicular to the facing direction is equal to or more than 0.5 and the entirety of light passing through the aperture is incident on the band pass filter.
-
-
-
-
-
-
-
-
-