Abstract:
An X-ray fluorescence spectrometer includes: a sample stage configured to place a sample thereon; an X-ray source configured to irradiate the sample with primary X-rays; a detector, which is configured to detect fluorescent X-rays produced from the sample irradiated with the primary X-rays, and which includes an X-ray incident window formed by a window material through which fluorescent X-rays is transmittable; and a gas blowing mechanism configured to blow a gas to at least one of an outer surface of the X-ray incident window and the sample stage.
Abstract:
An X-ray transmission inspection apparatus includes an X-ray source for irradiating a sample with X-rays, a two-dimensional sensor for detecting transmission X-rays passing through the sample, a sample moving mechanism for moving the sample, a calculation unit for processing an image of the transmission X-rays detected by the two-dimensional sensor, and a display unit for displaying a cross-sectional image. When V1 is a speed at which the sample moves, F is a frame rate of the two-dimensional sensor, A is a sample pitch of the two-dimensional sensor, and LS is a distance between the X-ray source and the two-dimensional sensor, the calculation unit creates a cross-sectional image taken at a distance L from the X-ray source by adding the images of the pixels positioned at an interval of [(LS×V2)/(L×F×A)] in a direction in which the sample moves.
Abstract:
Disclosed are an X-ray transmission inspection apparatus and an inspection method using the same that are capable of preventing over-detection and erroneous detection of foreign matter even when variations in vertical position of the sample occur. The X-ray transmission inspection apparatus includes: an X-ray source (2) irradiating a sample with X-rays; a sample moving device (3) moving the sample S continuously to a predetermined direction while X-rays X are emitted from the X-ray source; a time delay integration sensor (TDI sensor) (4) provided opposed to the X-ray source based on the sample, and detecting the X-rays transmitted through the sample; a distance sensor (5) measuring a distance between the X-ray source and the sample; and a TDI controller (6) controlling the TDI sensor by changing a charge transfer speed of the TDI sensor (4) in real time based on variations in the distance measured by the distance sensor.
Abstract:
An X-ray fluorescence spectrometer includes: a sample stage configured to place a sample thereon; an X-ray source configured to irradiate the sample with primary X-rays; a detector, which is configured to detect fluorescent X-rays produced from the sample irradiated with the primary X-rays, and which includes an X-ray incident window formed by a window material through which fluorescent X-rays is transmittable; and a gas blowing mechanism configured to blow a gas to at least one of an outer surface of the X-ray incident window and the sample stage.
Abstract:
A transmission X-ray analyzer (1) for detecting a transmission X-ray image of a sample (100) that is continuous in a band shape includes: a TDI sensor (14); an X-ray source (12) arranged opposed to a TDI sensor; a pair of support rollers (31, 32) arranged away from the TDI sensor between the TDI sensor and the X-ray source, the pair of support rollers being configured to transport the sample to a detection position of the TDI sensor while keeping a constant interval between the TDI sensor and the sample; and a pair of outside rollers (51, 52) arranged respectively on an outer side of the pair of support rollers in a transportation direction (L). One of the pair of support rollers and one of the pair of outside rollers are arranged at different positions as to apply a tension to the sample between the pair of support rollers.