Abstract:
An ink jet recording device 1 includes a plurality of head modules 101 each formed with a plurality of nozzles. The ink jet recording device 1 prints a test pattern using the all nozzle of the head modules 101. Precise positions of dots forming the test pattern are detected, based on which positional shifts of the head modules 101 are calculated. The deflection amount and ink ejection timing for each head module 101 are changed based on the detected positional shift. In this manner, positional shifts of the assembled head modules 101 are electrically corrected without mechanically changing the physical positions of the head modules 101.
Abstract:
A liquid discharge apparatus includes a liquid discharger and circuitry. The liquid discharger includes a nozzle to discharge liquid. The circuitry is configured to generate and output a common drive waveform including a plurality of drive pulses for discharging the liquid; select one or more of the plurality of drive pulses from the common drive waveform and apply the one or more of the plurality of drive pulses to a pressure generating element of the liquid discharger; and adjust, with different adjustment values, application waveform shapes of at least two of the plurality of drive pulses applied to the pressure generating element.
Abstract:
A liquid discharge apparatus includes a head and a switching device. The head includes a piezoelectric element and a pressure chamber configured to discharge liquid. The switching device is configured to select application or non-application of a drive voltage waveform to the piezoelectric element. The drive voltage waveform includes a discharge waveform to pressurize and discharge the liquid in the pressure chamber and a damping waveform to suppress residual vibration in the pressure chamber. The damping waveform is disposed after the discharge waveform in time series. The switching device includes a switch and a diode. The switch is configured to be turned on in a falling waveform element of each of the discharge waveform and the damping waveform. The diode is connected in parallel with the switch in a direction opposite to the falling waveform element of each of the discharge waveform and the damping waveform.
Abstract:
A wiring substrate includes a plurality of wiring patterns, a protective layer to cover the plurality of wiring patterns and regions between the plurality of wiring patterns, and a plurality of terminals communicating with the plurality of wiring patterns, respectively, the plurality of terminals not covered by the protective layer. Pitch between the plurality of terminals adjacent to each other includes a first pitch and a second pitch wider than the first pitch. At least one of the plurality of wiring patterns, the terminals of which are adjacent to each other at the second pitch, includes a portion of expanded width having a width wider than a width of the plurality of terminals. The portion of expanded width is covered with the protective layer.
Abstract:
A liquid discharge head includes a plurality of nozzles to discharge liquid droplets; a plurality of piezoelectric elements, each corresponding to a corresponding one of the plurality of nozzles and disposed along a nozzle alignment direction along which the plurality of nozzles is aligned; an actuator member on which the plurality of piezoelectric elements is aligned; and wiring disposed along the nozzle alignment direction, connected to the plurality of piezoelectric elements, and included in the actuator member, the wiring including a first wiring pattern to which the plurality of piezoelectric elements is connected, the first wiring pattern including a near side proximal to and a far side distal from a source of a drive signal for the piezoelectric elements. The near side and the far side are connected via a second wiring pattern.
Abstract:
A droplet discharging head includes: a nozzle substrate that includes a nozzle opening to discharge a droplet therethrough; a liquid chamber substrate that includes liquid pressure chambers communicating with the nozzle openings; a vibration plate arranged to face the nozzle substrate with the liquid chamber substrate interposed therebetween; piezoelectric elements that are provided to face the liquid pressure chambers with the vibration plate interposed therebetween and are arranged in a predetermined direction; a driving element provided, in a flip-chip implementation, on a flow path substrate that includes the nozzle substrate, the liquid chamber substrate, the vibration plate, and the piezoelectric elements; and a first reinforcing wire that is disposed to at least one of the flow path substrate and the driving element, has a band shape extending in a direction along a row of the piezoelectric elements, and is connected to a common electrode shared by the piezoelectric elements.
Abstract:
An inkjet head includes: an ink tank plate that includes a nozzle to discharge a liquid; a drive circuit member connected to an electromechanical transducer to apply a voltage to the electromechanical transducer to generate a pressure in an ink tank to discharge a liquid from the nozzle; a liquid supply plate stacked approximately in parallel with the drive circuit member on the ink tank plate; and a sealing material that hermetically seals an electrical connection between the drive circuit member and the wiring member. The liquid supply plate is provided with a receptacle having a hole portion or a concave portion and a mount area surrounded by the receptacle. The drive circuit member is received in the mount area. The sealing material is filled inside the mount area after the liquid supply plate is bonded to the ink tank plate.
Abstract:
An OFF timing of a drive waveform is set to be concentrated on a position of the drive waveform where a long time with substantially no voltage fluctuation can be ensured, and a pulse present before the position timewise is sequentially selected and applied to a pressure generating element.
Abstract:
(S)-1-(4-Chloro-5-isoquinolinesulfonyl)-3-(methylamino)pyrrolidine monohydrochloride and a crystal thereof, and a crystal of the aforementioned monohydrochloride having a major peak or peaks at one or more positions selected from the group consisting of positions where 2θs are about 13.9°, 21.5°, 21.7°, 22.4°, 22.8°, 24.5° and 35.0° in a powder X-ray diffraction spectrum, which have excellent properties as active ingredient of a medicament for prophylactic and/or therapeutic treatment of glaucoma and the like.
Abstract:
An image forming apparatus having a liquid ejection head including a plurality of nozzles for ejecting droplets and a plurality of piezoelectric elements for generating a pressure for discharging droplets in respective nozzles. The image forming apparatus includes a polarization adjustment unit that performs a polarization adjustment in parallel for adjustment of target nozzles.