Abstract:
An arrangement for providing real-time, in-service OTDR measurements in an optical communication system utilizing distributed Raman amplification. One or more of the laser diodes used to provide the pump light necessary to create optical gain is modified to also generate short duration pulses that ride above or below the conventional pump light. These short duration pulses (which co-exist with the pump light within the optical fiber) are used in performing OTDR measurements, with a conventional processing system used to evaluate reflected pulses and create the actual OTDR measurements.
Abstract:
A doped fiber amplifier (e.g., an erbium-doped fiber amplifier—EDFA) module is configured to include metrology functionality for performing real-time measurements of the fiber spans connected to the EDFA. In one embodiment, a separate component utilized to perform optical time domain reflectometry (OTDR) measurements is embedded with the EDFA module. The OTDR measurement component includes its own laser source and detector, which are used to analyze the input and output fiber spans associated with the EDFA. In another embodiment, the pump laser of the EDFA is also used as the optical probe light source for the OTDR component, where the source is either “switched” or “shared” between performing amplification and providing OTDR measurements. In yet another embodiment, a “dual pump” source is included with the OTDR component itself and modified to utilize one laser for amplification and the other for OTDR purposes.
Abstract:
An arrangement for providing real-time, in-service OTDR measurements in an optical communication system utilizing distributed Raman amplification. One or more of the laser diodes used to provide the pump light necessary to create optical gain is modified to also generate short duration pulses that ride above or below the conventional pump light. These short duration pulses (which co-exist with the pump light within the optical fiber) are used in performing OTDR measurements, with a conventional processing system used to evaluate reflected pulses and create the actual OTDR measurements.