Abstract:
A method and apparatus for monitoring and controlling an optical node 100. The optical node 100 including one or more optical components 120, 121 or 122 connected by optical fiber carrying an optical signal 102. The optical signal 102 including a plurality of optical channels. A set of measurement sequences is determined, each measurement sequence defining a set of optical channels from the plurality of optical channels and a measuring sequence for measuring an optical property of the set of optical channels. A measurement sequence is selected from the set of measurement sequences based on the operating conditions of the optical node 100. The optical properties of the set of optical channels of the selected measurement sequence are measured. The measured optical properties are analyzed to determine whether one or more optical components 120, 121 or 122 are causing the optical node 100 to operate outside the tolerance of a defined set of operating conditions. The operation of the determined optical components 120, 121 or 122 are adjusted to enable the optical node 100 to operate in accordance with the defined set of operating conditions. An optical performance monitor is also provided for use with the method and apparatus.
Abstract:
An OTDR system utilizes a laser source that is turned “on” and kept powered until its light reaches the end of the fiber span being measured (i.e., until the fiber span is fully illuminated). At any point in time after the fiber is fully illuminated, the laser source can be turned “off”. The return (reflected and backscattered) signal is directed into a photodetector of the OTDR, and is measured from the point in time when the fiber span starts to be illuminated. The measurements are made by sampling the return signal at predetermined time intervals—defined as the sampling rate. The created power samples are then subjected to post-processing in the form of a differentiation operation to create a conventional OTDR trace from the collected data.
Abstract:
An OTDR system utilizes a laser source that is turned “on” and kept powered until its light reaches the end of the fiber span being measured (i.e., until the fiber span is fully illuminated). At any point in time after the fiber is fully illuminated, the laser source can be turned “off”. The return (reflected and backscattered) signal is directed into a photodetector of the OTDR, and is measured from the point in time when the fiber span starts to be illuminated. The measurements are made by sampling the return signal at predetermined time intervals—defined as the sampling rate. The created power samples are then subjected to post-processing in the form of a differentiation operation to create a conventional OTDR trace from the collected data.
Abstract:
An optical amplifier assembly for determining a parameter of an optical fibre configured to amplify an optical signal being propagated therethrough, the assembly comprising: at least one amplifier pump light source assembly configured to transmit light at a plurality of wavelengths into the optical fibre; a receiver configured to receive light that has propagated through at least part of the optical fibre; and a processor configured to determine the parameter of the optical fibre based on the received light.
Abstract:
An optical amplifier module is configured as a multi-stage free-space optics arrangement, including at least an input stage and an output stage. The actual amplification is provided by a separate fiber-based component coupled to the module. A propagating optical input signal and pump light are provided to the input stage, with the amplified optical signal exiting the output stage. The necessary operations performed on the signal within each stage are provided by directing free-space beams through discrete optical components. The utilization of discrete optical components and free-space beams significantly reduces the number of fiber splices and other types of coupling connections required in prior art amplifier modules, allowing for an automated process to create a “pluggable” optical amplifier module of small form factor proportions.
Abstract:
A doped fiber amplifier (e.g., an erbium-doped fiber amplifier—EDFA) module is configured to include metrology functionality for performing real-time measurements of the fiber spans connected to the EDFA. In one embodiment, a separate component utilized to perform optical time domain reflectometry (OTDR) measurements is embedded with the EDFA module. The OTDR measurement component includes its own laser source and detector, which are used to analyze the input and output fiber spans associated with the EDFA. In another embodiment, the pump laser of the EDFA is also used as the optical probe light source for the OTDR component, where the source is either “switched” or “shared” between performing amplification and providing OTDR measurements. In yet another embodiment, a “dual pump” source is included with the OTDR component itself and modified to utilize one laser for amplification and the other for OTDR purposes.
Abstract:
A doped fiber amplifier (e.g., an erbium-doped fiber amplifier—EDFA) module is configured to include metrology functionality for performing real-time measurements of the fiber spans connected to the EDFA. In one embodiment, a separate component utilized to perform optical time domain reflectometry (OTDR) measurements is embedded with the EDFA module. The OTDR measurement component includes its own laser source and detector, which are used to analyze the input and output fiber spans associated with the EDFA. In another embodiment, the pump laser of the EDFA is also used as the optical probe light source for the OTDR component, where the source is either “switched” or “shared” between performing amplification and providing OTDR measurements. In yet another embodiment, a “dual pump” source is included with the OTDR component itself and modified to utilize one laser for amplification and the other for OTDR purposes.
Abstract:
An OTDR system utilizes a laser source that is turned “on” and kept powered until its light reaches the end of the fiber span being measured (i.e., until the fiber span is fully illuminated). At any point in time after the fiber is fully illuminated, the laser source can be turned “off”. The return (reflected and backscattered) signal is directed into a photodetector of the OTDR, and is measured from the point in time when the fiber span starts to be illuminated. The measurements are made by sampling the return signal at predetermined time intervals—defined as the sampling rate. The created power samples are then subjected to post-processing in the form of a differentiation operation to create a conventional OTDR trace from the collected data.
Abstract:
An optical amplifier assembly for determining a parameter of an optical fiber configured to amplify an optical signal being propagated therethrough, the assembly comprising: at least one amplifier pump light source assembly configured to transmit light at a plurality of wavelengths into the optical fiber; a receiver configured to receive light that has propagated through at least part of the optical fiber; and a processor configured to determine the parameter of the optical fiber based on the received light.
Abstract:
An OTDR system utilizes a laser source that is turned “on” and kept powered until its light reaches the end of the fiber span being measured (i.e., until the fiber span is fully illuminated). At any point in time after the fiber is fully illuminated, the laser source can be turned “off”. The return (reflected and backscattered) signal is directed into a photodetector of the OTDR, and is measured from the point in time when the fiber span starts to be illuminated. The measurements are made by sampling the return signal at predetermined time intervals—defined as the sampling rate. The created power samples are then subjected to post-processing in the form of a differentiation operation to create a conventional OTDR trace from the collected data.