Abstract:
A contact tip assembly with a preheating tip comprises a welding-type power source configured to provide welding-type current to a welding-type circuit, the welding-type circuit comprising a welding-type electrode and a first contact tip of a welding torch. The assembly also includes an electrode preheating circuit configured to provide preheating current through a portion of the welding-type electrode via a second contact tip of the welding torch, and a voltage sense circuit to monitor a voltage drop across the two contact tips, and the electrode preheating circuit adjusts at least one of the first current or the preheating current based on the voltage drop.
Abstract:
Methods and apparatus to communicate via a weld cable are disclosed. An example welding-type power supply includes a power converter, a receiver circuit, and a controller. The power converter converts input power to welding-type power based on a weld voltage setpoint and to output the welding-type power via a weld circuit. The receiver circuit receives a communication via the weld circuit while current is flowing through the weld circuit or after the current has stopped flowing through the weld circuit. The communication includes weld voltage feedback information measured at a device remote from the power supply while the current is flowing through the weld circuit. The controller controls the welding-type power output by the power converter according to a voltage feedback loop using the weld voltage feedback information to regulate a weld voltage at the remote device to the weld voltage setpoint.
Abstract:
A consumable filler metal delivery system includes a reciprocating wire feeding gear assembly configured to move a wire forward and backward with a net forward motion and a motor configured to drive the reciprocating wire feeding gear assembly, wherein the motor is configured to rotate only in one direction during operation of the consumable filler metal delivery system.
Abstract:
Methods and apparatus to provide visual information associated with welding operations are disclosed. An weld training system includes a display, a camera, a communications device, and a welding helmet. The communications device communicates with welding equipment. The welding helmet has a view port. The communications device is configured to hold the camera, the communications device, and the display such that, when the welding helmet is worn by a wearer, the display is viewable by the wearer, the camera has a view through the view port such that the display displays to the wearer images taken by the camera through the view port and displays a simulated object generated based on information received from the welding equipment via the communications device.
Abstract:
A workpiece may be heated with one or more induction heating coils coupled to an induction heating and control system. The heating is done in conjunction with a metal working operation, such as welding. The heating may be performed to remove coatings and the like before welding, to apply claddings and the like following welding, to allow for improved porosity of a weld bead, and so forth. Induction heating heads may be placed before or after a welding torch, and may be moved with or independently. One or more induction heating heads may be placed in pipe to be welded, such as on, in, or adjacent to an internal pipe claim that holds pipe during welding.
Abstract:
A welding method includes feeding a welding electrode axially from a welding torch, moving the welding electrode radially in a desired pattern with respect to a central axis of the welding torch by a motion control assembly within the welding torch, transmitting from control circuitry a signal corresponding to a position of the welding electrode relative to a weld joint or weld pool, advancing the welding torch or a workpiece to establish a weld, and transferring material from the welding electrode to a first location in an area of the weld pool. The welding electrode moves radially while feeding the welding electrode from the welding torch, the material from the welding electrode is transferred to the first location during a first cycle of the desired pattern, and the first location is controlled based at least in part on the signal.
Abstract:
Methods and apparatus to provide visual information associated with welding operations are disclosed. An weld training system includes a display, a camera, a communications device, and a welding helmet. The communications device communicates with welding equipment. The welding helmet has a view port. The communications device is configured to hold the camera, the communications device, and the display such that, when the welding helmet is worn by a wearer, the display is viewable by the wearer, the camera has a view through the view port such that the display displays to the wearer images taken by the camera through the view port and displays a simulated object generated based on information received from the welding equipment via the communications device.
Abstract:
An additive manufacturing system includes an additive manufacturing tool configured to supply a plurality of droplets to a part, a temperature control device configured to control a temperature of the part, and a controller configured to control the composition, formation, and application of each droplet to the plurality of droplets to the part independent from control of the temperature of the part via the temperature control device. The plurality of droplets is configured to build up the part. Each droplet of the plurality of droplets includes at least one metallic anchoring material.
Abstract:
A welding method includes feeding a welding electrode axially from a welding torch, moving the welding electrode radially in a desired pattern with respect to a central axis of the welding torch by a motion control assembly within the welding torch, transmitting from control circuitry a signal corresponding to a position of the welding electrode relative to a weld joint or weld pool, advancing the welding torch or a workpiece to establish a weld, and transferring material from the welding electrode to a first location in an area of the weld pool. The welding electrode moves radially while feeding the welding electrode from the welding torch, the material from the welding electrode is transferred to the first location during a first cycle of the desired pattern, and the first location is controlled based at least in part on the signal.
Abstract:
Methods and apparatus to provide visual information associated with welding operations are disclosed. An weld training system includes a display, a camera, a communications device, and a welding helmet. The communications device communicates with welding equipment. The welding helmet has a view port. The communications device is configured to hold the camera, the communications device, and the display such that, when the welding helmet is worn by a wearer, the display is viewable by the wearer, the camera has a view through the view port such that the display displays to the wearer images taken by the camera through the view port and displays a simulated object generated based on information received from the welding equipment via the communications device.