Abstract:
There is provided an electrostatic film formation device including a powder feeder feeding powder, a substrate on which a powder film is to be formed from the powder, and a DC power supply applying voltage to the powder feeder and the substrate. The DC power supply applies the voltage to draw the powder from the powder feeder to the substrate with electrostatic force. The electrostatic film formation device further includes a masking member disposed between the powder feeder and the substrate. The masking member is formed with a passing port allowing the powder to pass from the powder feeder to the substrate. The masking member is disposed in the state where the masking member is not in contact with the powder film to be formed.
Abstract:
An electrospray apparatus and a method of operating the electrospray apparatus can include an array of emitters that can emit a fog of charged droplets, wherein the charged droplets can be produced in a carrier gas by the array of emitters and directed into a development zone of a charge image. Each emitter among the array of emitters can be implemented as a cone-shaped emitter. The array of emitters can be implemented as a cone jet electrospray micro-array that can produce a high liquid concentration of the charged droplets in the carrier gas. The charged droplets can comprise charged fountain solution droplets, and the charge image can be a fountain solution image that can be transferrable to a blanket for control and subsequent ink transfer to a receiving medium.
Abstract:
An electrostatic atomizer electrostatically atomizes a fluid into a charged spray, wherein the charged spray includes a plurality of charged droplets. The electrostatic atomizer includes a chamber forming an inlet and an exit aperture, wherein the chamber is configured for fluid to flow into the chamber from the inlet and to flow out of the chamber from the aperture. An emitter electrode is in liquid contact with the fluid in the chamber and injects an electrical charge into the fluid in the chamber. An impedance circuit is coupled to the chamber and configured to obtain a voltage difference between the emitter electrode and the exit aperture, wherein the voltage difference is at least a minimum voltage threshold.
Abstract:
To provide a composition for powder coating material which can be sufficiently pulverized, and with which a powder coating material capable of forming a coating film excellent in weather resistance and adhesion to the substrate can be obtained; a powder coating material capable of forming a coating film excellent in weather resistance and adhesion to the substrate; and a coated article having a coating film excellent in weather resistance and adhesion to the substrate, on its surface. A composition for powder coating material comprising a polyvinylidene fluoride (A) having a melting point of from 151 to 200° C., and an acrylic resin (B) having a glass transition temperature of from 40 to 90° C. A powder coating material comprising the composition for powder coating material, and a coated article having a coating film formed of the powder coating material.
Abstract:
An electrospray emitter (10) for emitting a liquid comprising a sheet (40) having a channel (65) opening to an aperture (55) on a flat emitter surface extending across the sheet (40). A charging electrode (80) coupleable to an electrical supply and arranged to apply an electrical charge to liquid passing into the channel (65). A control electrode (50) proximal to the channel (65) for controlling electrospray emission, that may be embedded in the sheet. A non-wetting or insulating layer (30) may be applied to the sheet.
Abstract:
A discharge device according to the present disclosure includes a discharge electrode and a voltage applicator that applies a voltage to the discharge electrode and thus causes discharge that is further developed from corona discharge at the discharge electrode. The discharge is discharge in which a discharge path is intermittently formed by dielectric breakdown so as to stretch from the discharge electrode to a surrounding. This discharge can be called leader discharge. This makes it possible to increase an amount of generated active component while keeping an increase of ozone small.
Abstract:
An electrostatic atomizing device of the present disclosure includes a discharge electrode, a counter electrode, a liquid supplying unit, a current path, a voltage applicator, and a limiting resistor. The limiting resistor is disposed on a first current path or a second current path included in the current path. The first current path electrically connects the voltage applicator and the counter electrode, and the second current path electrically connects the voltage applicator and the discharge electrode. This makes it possible to increase an amount of generated radicals while keeping an increase of ozone small. In addition, an electric current peak of an instantaneous electric current can be kept small.
Abstract:
A method and system for determining a density of a fluid is provided. The method is carried out using an electrospraying apparatus connected in the system. At a first step fluid is introduced into an emitter of the electrospraying apparatus. A voltage is applied between the emitter and a counter-electrode spaced apart from the emitter for a number of intermittent time periods, wherein the duration of at least some of the time periods during which the voltage is applied progressively decreases. The current between the emitter and the counter-electrode is measured for each time period during which a voltage is applied and the shortest time period for which a current reading is obtained is recorded. The shortest time period is used to calculate the density of the fluid in the emitter.
Abstract:
A high dielectric contrast composition for particle formation that includes a high dielectric solvent, and a polymer dissolved into the high dielectric solvent. A method of forming particles including dissolving a polymer in a high dielectric solvent to form a high dielectric composition, and dielectrophoretically spinning the high dielectric composition in an electric field to form particles.
Abstract:
A thin film fabricating apparatus includes an electrode part which sprays a thin film material as electrified spray particles, a substrate holder disposed facing the electrode part and holding a substrate to be provided with a thin film, and a mask disposed between the electrode part and the substrate holder and provided with a plurality of pattern grooves, where the mask and the substrate are applied with a mask voltage (Vm) and a substrate voltage (V0), respectively, the mask voltage (Vm) is a variable voltage, and the substrate voltage (V0) has the same polarity as the polarity of spray particles.