Abstract:
The present disclosure relates to apparatuses and methods for performing in-line lens-free digital holography of objects. At least one embodiment relates to an apparatus for performing in-line lens-free digital holography of an object. The apparatus includes a point light source adapted for emitting coherent light. The apparatus also includes an image sensing device adapted and arranged for recording interference patterns resulting from interference from light waves directly originating from the point light source and object light waves. The object light waves originate from light waves from the point light source that are scattered or reflected by the object. The image sensing device comprises a plurality of pixels. The point light source comprises a broad wavelength spectrum light source and a pinhole structure. The image sensing device comprises a respective narrow band wavelength filter positioned above each pixel that filters within a broad wavelength spectrum of the point light source.
Abstract:
The present disclosure relates to apparatuses and methods for performing in-line lens-free digital holography of objects. At least one embodiment relates to an apparatus for performing in-line lens-free digital holography of an object. The apparatus includes a point light source adapted for emitting coherent light. The apparatus also includes an image sensing device adapted and arranged for recording interference patterns resulting from interference from light waves directly originating from the point light source and object light waves. The object light waves originate from light waves from the point light source that are scattered or reflected by the object. The image sensing device comprises a plurality of pixels. The point light source comprises a broad wavelength spectrum light source and a pinhole structure. The image sensing device comprises a respective narrow band wavelength filter positioned above each pixel that filters within a broad wavelength spectrum of the point light source.
Abstract:
A device for detecting particles in air; said device comprising: a flow channel configured to allow a flow of air comprising particles through the flow channel; a light source configured to illuminate the particles, such that an interference pattern is formed by interference between light being scattered by the particles and non-scattered light from the light source; an image sensor configured to detect incident light, detect the interference pattern, and to acquire a time-sequence of image frames, each image frame comprising a plurality of pixels, each pixel representing a detected intensity of light; and a frame processor configured to filter information in the time-sequence of image frames, wherein said filtering comprises: identifying pixels of interest in the time-sequence of image frames, said pixels of interest picturing an interference pattern potentially representing a particle in the flow of air, and outputting said identified pixels of interest for performing digital holographic reconstruction.
Abstract:
Example embodiments relate to methods and imaging systems for holographic imaging. One embodiment includes a method for holographic imaging of an object. The method includes driving a laser using a current which is below a threshold current of the laser. The method also includes illuminating the object using illumination light output by the laser. Further, the method includes detecting an interference pattern formed by object light, having interacted with the object, and reference light of the illumination light.
Abstract:
An apparatus for in-line holographic imaging is disclosed. In one aspect, the apparatus includes at least a first light source and a second light source arranged for illuminating an object arranged in the apparatus with a light beam. The apparatus also includes an image sensor arranged to detect at least a first and a second interference pattern, wherein the first interference pattern is formed when the object is illuminated by the first light source and the second interference pattern is formed when the object is illuminated by the second light source. The first and second interference patterns are formed by diffracted light, being scattered by the object, and undiffracted light of the light beam. The at least first and second light sources are arranged at different angles in relation to the object, and possibly illuminate the object using different wavelengths.
Abstract:
Embodiments described herein relate to a large area lens-free imaging device. One example is a lens-free device for imaging one or more objects. The lens-free device includes a light source positioned for illuminating at least one object. The lens-free device also includes a detector positioned for recording interference patterns of the illuminated at least one object. The light source includes a plurality of light emitters that are positioned and configured to create a controlled light wavefront for performing lens-free imaging.
Abstract:
A holographic imaging device is disclosed. In one aspect, the holographic imaging device comprises an imaging unit comprising at least two light sources, wherein the imaging unit is configured to illuminate an object by emitting at least two light beams with the at least two light sources. A first and second light beams have different wave-vectors and wavelengths. The holographic imaging device further comprises a processing unit configured to obtain at least two holograms of the object by controlling the imaging unit to sequentially illuminate the object with respectively the first light beam and the second light beam, construct at least two 2D image slices based on the at least two holograms, wherein each 2D image slice is constructed at a determined depth within the object volume, and generate a three-dimensional image of the object based on a combination of the 2D image slices.
Abstract:
A holographic imaging device is disclosed. In one aspect, the holographic imaging device comprises an imaging unit comprising at least two light sources, wherein the imaging unit is configured to illuminate an object by emitting at least two light beams with the at least two light sources. A first and second light beams have different wave-vectors and wavelengths. The holographic imaging device further comprises a processing unit configured to obtain at least two holograms of the object by controlling the imaging unit to sequentially illuminate the object with respectively the first light beam and the second light beam, construct at least two 2D image slices based on the at least two holograms, wherein each 2D image slice is constructed at a determined depth within the object volume, and generate a three-dimensional image of the object based on a combination of the 2D image slices.
Abstract:
A device in holographic imaging comprises: at least two light sources, wherein each of the at least two light sources is arranged to output light of a unique wavelength; and at least one holographic optical element, wherein the at least two light sources and the at least one holographic optical element are arranged in relation to each other such that light from the at least two light sources incident on the at least one holographic optical element interacts with the at least one holographic optical element to form wavefronts of similar shape for light from the different light sources.
Abstract:
The present disclosure relates to devices and methods configured to perform drug screening on cells. At least one embodiment relates to a lens-free device for performing drug screening on cells. The lens-free device includes a substrate having a surface. The lens-free device also includes a light source positioned to illuminate the cells, when present, on the substrate surface with a light wave. The lens-free device further includes a sensor positioned to detect an optical signal caused by illuminating the cells. The substrate surface includes a microelectrode array for sensing an electrophysiological signal from the cells.