NON-LINEAR FIN-BASED DEVICES
    11.
    发明申请

    公开(公告)号:US20190097057A1

    公开(公告)日:2019-03-28

    申请号:US16203780

    申请日:2018-11-29

    Abstract: An embodiment includes an apparatus comprising: a non-planar fin having first, second, and third portions each having major and minor axes and each being monolithic with each other; wherein (a) the major axes of the first, second, and third portions are parallel with each other, (b) the major axes of the first and second portions are non-collinear with each other, (c) each of the first, second, and third portions include a node of a transistor selected from the group comprising source, drain, and channel, (e) the first, second, and third portions comprise at least one finFET. Other embodiments are described herein.

    Fin-based thin film resistor
    13.
    发明授权

    公开(公告)号:US10930729B2

    公开(公告)日:2021-02-23

    申请号:US16328704

    申请日:2016-10-21

    Abstract: Fin-based thin film resistors, and methods of fabricating fin-based thin film resistors, are described. In an example, an integrated circuit structure includes a fin protruding through a trench isolation region above a substrate. The fin includes a semiconductor material and has a top surface, a first end, a second end, and a pair of sidewalls between the first end and the second end. An isolation layer is conformal with the top surface, the first end, the second end, and the pair of sidewalls of the fin. A resistor layer is conformal with the isolation layer conformal with the top surface, the first end, the second end, and the pair of sidewalls of the fin. A first anode cathode electrode is electrically connected to the resistor layer. A second anode or cathode electrode is electrically connected to the resistor layer.

    FINFET based junctionless wrap around structure

    公开(公告)号:US10854757B2

    公开(公告)日:2020-12-01

    申请号:US16344226

    申请日:2016-12-13

    Abstract: A transistor including a channel disposed between a source and a drain, a gate electrode disposed on the channel and surrounding the channel, wherein the source and the drain are formed in a body on a substrate and the channel is separated from the body. A method of forming an integrated circuit device including forming a trench in a dielectric layer on a substrate, the trench including dimensions for a transistor body including a width; forming a channel material in the trench; recessing the dielectric layer to expose a first portion of the channel material; increasing a width dimension of the exposed channel material; recessing the dielectric layer to expose a second portion of the channel material; removing the second portion of the channel material; and forming a gate stack on the first portion of the channel material, the gate stack including a gate dielectric and a gate electrode.

    Transmission lines using bending fins from local stress

    公开(公告)号:US10761264B2

    公开(公告)日:2020-09-01

    申请号:US16462077

    申请日:2016-12-30

    Abstract: Embodiments of the invention include an electromagnetic waveguide and methods of forming electromagnetic waveguides. In an embodiment, the electromagnetic waveguide may include a first semiconductor fin extending up from a substrate and a second semiconductor fin extending up from the substrate. The fins may be bent towards each other so that a centerline of the first semiconductor fin and a centerline of the second semiconductor fin extend from the substrate at a non-orthogonal angle. Accordingly, a cavity may be defined by the first semiconductor fin, the second semiconductor fin, and a top surface of the substrate. Embodiments of the invention may include a metallic layer and a cladding layer lining the surfaces of the cavity. Additional embodiments may include a core formed in the cavity.

    Depletion mode gate in ultrathin FINFET based architecture

    公开(公告)号:US10756210B2

    公开(公告)日:2020-08-25

    申请号:US16317708

    申请日:2016-09-30

    Abstract: A transistor device including a transistor including a body disposed on a substrate, a gate stack contacting at least two adjacent sides of the body and a source and a drain on opposing sides of the gate stack and a channel defined in the body between the source and the drain, wherein a conductivity of the channel is similar to a conductivity of the source and the drain. An input/output (IO) circuit including a driver circuit coupled to the logic circuit, the driver circuit including at least one transistor device is described. A method including forming a channel of a transistor device on a substrate including an electrical conductivity; forming a source and a drain on opposite sides of the channel, wherein the source and the drain include the same electrical conductivity as the channel; and forming a gate stack on the channel.

    STACKED TRANSISTORS WITH STRAIN MATERIALS ON SOURCE AND DRAIN

    公开(公告)号:US20250113561A1

    公开(公告)日:2025-04-03

    申请号:US18476624

    申请日:2023-09-28

    Abstract: In stacked transistor device, such as a complementary field-effect-transistor (CFET) device, different strain materials may be used in different layers, e.g., a tensile material is deposited in a first isolation region in the PMOS layer, and a compressive material is deposited in second isolation region in the NMOS layer. The strain materials may be stacked, such that the second isolation region may be positioned over the first isolation region. In some cases, in one or both of the isolation regions, a liner material is included between the strain material and the source and drain regions. Certain embodiments provide independent tuning of strain forces in a stacked transistor device. Different materials are selected for different layers in the stacked device to provide favorable performance enhancement or tuning (e.g., adjustment of the threshold voltage) in NMOS and PMOS layers.

Patent Agency Ranking